

Evidian

SafeKit User's Guide

High Availability Software for

Critical Applications

39 A2 19MC 01 3

Overview

Subject This document covers all the phases of the SafeKit implementation:

architecture, installation, tests, administration & troubleshooting,

support, and command line interface.

Intended

Readers

Architectures “High availability architectures” page 15

“SafeKit cluster in the cloud” page 315

Installation “Installation” page 25

Console “The SafeKit web console” page 35

“Securing the SafeKit web service” page 177

Advanced

configuration

“Cluster.xml for a SafeKit cluster configuration” page

227

“Userconfig.xml for a module configuration” page

235

“User application scripts for the module

configuration” page 293

“Examples of userconfig.xml and user scripts” page

299

Administration “Mirror module administration” page 95

“Farm module administration” page 105

“Command line interface” page 141

“Advanced administration” page 153

Support “Tests” page 69

“Troubleshooting” page 109

“Access to Evidian support” page 133

“Log Messages Index” page 337

Other “Table of Contents” page 5

“Third-Party Software” page 333

Release SafeKit 7.5

Supported

OS

Windows and Linux; for a detailed list of supported OS, see here

http://support.evidian.com/solutions/downloads/safekit/version_7.5/documentation/75softwarereleasebulletin.htm

SafeKit User's Guide

4 39 A2 19MC 01

Web Site Evidian marketing site: http://www.evidian.com/safekit

Evidian support site: https://support.evidian.com/safekit

Ref 39 A2 19MC 01

If you have any comments or questions related to this documentation, please mail us at
institute@evidian.com

Copyright © Evidian, 2023

The trademarks mentioned in this document are the propriety of their respective owners. The terms Evidian,
AccessMaster, SafeKit, OpenMaster, SSOWatch, WiseGuard, Enatel and CertiPass are trademarks registered by
Evidian.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical or otherwise without the prior written permission of the publisher.

Evidian disclaims the implied warranties of merchantability and fitness for a particular purpose and makes no
express warranties except as may be stated in its written agreement with and for its customer. In no event is
Evidian liable to anyone for any indirect, special, or consequential damages.

The information and specifications in this document are subject to change without notice. Consult your Evidian

Marketing Representative for product or service availability.

http://www.evidian.com/safekit
https://support.evidian.com/safekit

 Index

39 A2 19MC 01 5

Table of Contents

SafeKit User's Guide High Availability Software for Critical Applications 1

Overview .. 3

Table of Contents ... 5

1. High availability architectures .. 15

1.1 SafeKit cluster definition .. 15

1.2 SafeKit module definition - application integration .. 15

1.3 Mirror module: synchronous real time file replication and failover 16

1.3.1 File replication and failover ... 16

1.3.2 Step 1. Normal operation ... 16

1.3.3 Step 2. Failover ... 17

1.3.4 Step 3. Failback and reintegration ... 17

1.3.5 Step 4. Return to normal operation .. 18

1.3.6 Synchronous, fault-tolerant replication that loses no data when a server fails 18

1.4 Farm module: network load balancing and failover .. 19

1.4.1 Network load balancing and failover ... 19

1.4.2 Principle of a virtual IP address with network load balancing ... 19

1.4.3 Load balancing for stateful or stateless web services .. 19

1.5 Combining mirror and farm modules ... 20

1.5.1 Active/Active: 2 mirror modules backuping each other ... 20

1.5.2 N-to-1: N mirror modules with a single backup ... 21

1.5.3 Mixed farm/mirror: network load balancing, file replication, failover 22

1.6 The simplest high availability cluster in the cloud .. 23

1.6.1 Mirror cluster in Microsoft Azure, Amazon AWS and Google GCP .. 23

1.6.2 Farm cluster in Microsoft Azure, Amazon AWS and Google GCP ... 24

2. Installation ... 25

2.1 SafeKit install ... 25

2.1.1 Download the package ... 25

2.1.2 Installation directories and disk space provisioning .. 25

2.1.3 Install procedure ... 25

2.1.4 Use the SafeKit console or command line interface .. 27

2.1.5 SafeKit license keys ... 28

2.1.6 System specific procedures and characteristics ... 28

2.2 Mirror installation recommendation ... 29

2.2.1 Hardware prerequisites .. 29

2.2.2 Network prerequisites .. 29

2.2.3 Application prerequisites .. 29

2.2.4 File replication prerequisites ... 29

2.3 Farm installation recommendation .. 30

SafeKit User's Guide

6 39 A2 19MC 01

2.3.1 Hardware prerequisites .. 30

2.3.2 Network prerequisites .. 30

2.3.3 Application prerequisites .. 30

2.4 SafeKit upgrade .. 30

2.4.1 When proceed to an upgrade? ... 30

2.4.2 Prepare the upgrade .. 30

2.4.3 Uninstall procedure .. 31

2.4.4 Reinstall procedure .. 31

2.5 SafeKit full uninstall .. 32

2.5.1 On Windows as administrator .. 32

2.5.2 On Linux as root .. 32

2.6 SafeKit documentation .. 33

3. The SafeKit web console ... 35

3.1 Start the web console .. 35

3.1.1 Start a web browser .. 35

3.1.2 Connect to a SafeKit server .. 36

3.2 Configure a SafeKit Cluster .. 37

3.2.1 Simple configuration .. 37

3.2.2 Advanced configuration .. 39

3.2.3 Configuration with command line ... 40

3.3 Configure a module ... 41

3.3.1 Select the module to configure .. 43

3.3.2 Configuration wizard .. 44

3.3.3 Configuration with command line ... 49

3.4 Control a module .. 50

3.4.1 Select module and node ... 50

3.4.2 Control a farm module ... 52

3.4.3 Control a mirror module ... 53

3.4.4 Control with command line ... 53

3.5 Snapshots of module for support .. 54

3.5.1 Snapshot of module ... 54

3.5.2 Snapshot with command line .. 54

3.6 Monitor modules ... 55

3.7 Manage modules... 56

3.7.1 Advanced configuration of a module .. 58

3.7.2 Advanced configuration wizard .. 60

3.7.3 Uninstall a module ... 61

3.7.4 Configure a module stored into Application_Modules .. 62

3.8 Create a new module template (.safe) for deployments 63

3.8.1 Create a new module template .. 63

3.8.2 Deploy a new module template ... 64

 Index

39 A2 19MC 01 7

3.9 Secure access to the web console ... 65

3.10 The clusters inventory of the web console .. 66

3.10.1 Define the clusters inventory of the web console ... 66

3.10.2 Administer one cluster of the inventory with the web console .. 68

3.10.3 Administer all the clusters of the inventory with the web console ... 68

4. Tests ... 69

4.1 Installation and tests after boot .. 69

4.1.1 Test package installation .. 69

4.1.2 Test license and version ... 70

4.1.3 Test SafeKit services and processes running after boot .. 71

4.1.4 Test start of SafeKit web console ... 71

4.2 Tests of a mirror module ... 72

4.2.1 Test start of a mirror module on 2 servers STOP (red) ... 72

4.2.2 Test stop of a mirror module on the server PRIM (green) ... 72

4.2.3 Test start of a mirror module on the server STOP (red) .. 73

4.2.4 Test restart of a mirror module on the server PRIM (green) ... 73

4.2.5 Test swap of a mirror module from one server to the other ... 73

4.2.6 Test virtual IP address of a mirror module .. 74

4.2.7 Test file replication of a mirror module ... 75

4.2.8 Test mirror module shutdown on the server PRIM (green) ... 76

4.2.9 Test mirror module power-off on the server PRIM (green) ... 77

4.2.10 Test split brain with a mirror module .. 78

4.2.11 Continue your mirror module tests with checkers .. 78

4.3 Tests of a farm module .. 79

4.3.1 Test start of a farm module on all servers STOP (red) .. 79

4.3.2 Test stop of a farm module on one server UP (green) .. 79

4.3.3 Test restart of a farm module on one server UP (green) .. 79

4.3.4 Test virtual IP address of a farm module .. 80

4.3.5 Test TCP load balancing on a virtual IP address ... 82

4.3.6 Test split brain with a farm module .. 83

4.3.7 Test compatibility of the network with invisible MAC address (vmac_invisible)....................... 84

4.3.8 Test farm module shutdown of a server UP (green) ... 85

4.3.9 Test farm module power-off of a server UP (green) ... 85

4.3.10 Continue your farm module tests with checkers... 85

4.4 Tests of checkers common to mirror and farm .. 86

4.4.1 Test <errd>: checker of process with action restart or stopstart ... 86

4.4.2 Test <tcp> checker of the local application with action restart or stopstart 87

4.4.3 Test <tcp> checker of an external service with action wait ... 88

4.4.4 Test <interface check="on"> on a local network interface and with action wait 89

4.4.5 Test <ping> checker with action wait ... 90

4.4.6 Test <module> checker with action wait .. 91

SafeKit User's Guide

8 39 A2 19MC 01

4.4.7 Test <custom> checker with action wait .. 92

4.4.8 Test <custom> checker with action restart or stopstart .. 93

5. Mirror module administration ... 95

5.1 Operating mode of a mirror module .. 95

5.2 State automaton of a mirror module (STOP, WAIT, ALONE, PRIM, SECOND - red,

magenta, green) ... 96

5.3 First start-up of a mirror module (prim command) .. 97

5.4 Different reintegration cases (use of bitmaps) .. 98

5.5 Start-up of a mirror module with the up-to-date data (STOP (red) - WAIT

(red)) .. 99

5.6 Degraded replication mode (ALONE (green) degraded) 100

5.7 Automatic or manual failover (failover="off" - STOP (red) - WAIT (red)

) ... 101

5.8 Default primary server (automatic swap after reintegration) 103

5.9 Prim command fails: why? (command primforce).. 104

6. Farm module administration ... 105

6.1 Operating mode of a farm module .. 105

6.2 State automaton of a farm module (STOP, WAIT, UP - red, magenta, green) . 106

6.3 Start-up of a farm module ... 107

7. Troubleshooting ... 109

7.1 Connection issues with the web console ... 109

7.1.1 Browser check... 109

7.1.2 Browser state clear .. 110

7.1.3 Server check ... 110

7.2 Connection issues with the HTTPS web console ... 111

7.2.1 Check server certificates .. 111

7.2.2 Check certificates installed in SafeKit ... 112

7.2.3 Check client certificates .. 113

7.2.4 Revert to HTTP configuration .. 114

7.3 How to read logs of the module?... 114

7.4 How to read the commands log of the server? .. 115

7.5 Stable module (green) and (green) ... 115

7.6 Degraded module (green) and (red) .. 115

7.7 Out of service module (red) and (red) .. 116

7.8 Module STOP (red): restart the module ... 116

7.9 Module WAIT (red): repair the resource="down" 117

7.10 Module oscillating from (green) to (magenta) 118

7.11 Message on stop after maxloop .. 119

7.12 Module (green) but non-operational application 120

 Index

39 A2 19MC 01 9

7.13 Mirror module ALONE (green) / WAIT or STOP (red) 121

7.14 Farm module UP (green) but problem of load balancing in a farm 122

7.14.1 Reported network load share are not coherent .. 122

7.14.2 virtual IP address does not respond properly .. 122

7.15 Problem after Boot .. 122

7.16 Analysis from snapshots of the module .. 123

7.16.1 Module configuration files ... 123

7.16.2 Module dump files ... 124

7.17 Problem with the size of SafeKit databases .. 127

7.18 Problem for retrieving the certification authority certificate from your PKI 128

7.18.1 Export CA or CLCA certificate(s) from public certificates ... 128

7.18.2 Export public certificate .. 130

7.19 Still in Trouble .. 132

8. Access to Evidian support ... 133

8.1 Home page of support site ... 133

8.2 Permanent license keys ... 134

8.3 Create an account ... 134

8.4 Access to your account .. 135

8.5 Call desk to open a trouble ticket .. 135

8.5.1 Call desk operations... 135

8.5.2 Create a call ... 136

8.5.3 Attach the snapshots ... 137

8.5.4 Answers to a call and exchange with support .. 138

8.6 Download and upload area ... 139

8.6.1 Two areas of download and upload .. 139

8.6.2 Product download area ... 139

8.6.3 Private upload area .. 140

8.7 Knowledge base ... 140

9. Command line interface .. 141

9.1 Distributed commands ... 141

9.2 Command lines for boot and for shutdown ... 142

9.3 Command lines to configure and monitor safekit cluster 144

9.4 Command lines to control modules ... 146

9.5 Command lines to monitor modules .. 148

9.6 Command lines to configure modules .. 149

9.7 Command lines for support .. 151

10. Advanced administration .. 153

10.1 SafeKit environment variables and directories .. 153

10.1.1 Global .. 153

SafeKit User's Guide

10 39 A2 19MC 01

10.1.2 Module ... 154

10.2 SafeKit processes and services ... 155

10.3 Firewall settings ... 156

10.3.1 Firewall settings in Linux .. 156

10.3.2 Firewall settings in Windows ... 157

10.3.3 Other firewalls .. 158

10.4 Boot and shutdown setup in Windows.. 161

10.4.1 Automatic procedure .. 161

10.4.2 Manual procedure .. 162

10.5 Securing module internal communications ... 162

10.5.1 Configuration with the SafeKit Web console .. 164

10.5.2 Configuration with the Command Line Interface .. 165

10.5.3 Advanced configuration .. 165

10.6 Configuration of the SafeKit web service .. 167

10.6.1 Configuration files ... 167

10.6.2 Connection ports configuration .. 169

10.6.3 HTTP configuration .. 170

10.6.4 HTTPS configuration .. 170

10.6.5 HTTPS <-> HTTP configuration ... 170

10.7 Mail notification .. 171

10.7.1 Mail notification on the start and the stop of the module .. 171

10.7.2 Mail notification on the failover of the module ... 172

10.8 SNMP agent ... 173

10.8.1 The SNMP agent configuration ... 173

10.8.2 The SafeKit MIB .. 173

10.9 Commands log of the SafeKit server ... 175

11. Securing the SafeKit web service .. 177

11.1 Overview ... 177

11.1.1 Default setup .. 178

11.1.2 Predefined setups .. 178

11.2 HTTP setup .. 179

11.2.1 Default setup .. 179

11.2.2 Unsecure setup based on identical role for all .. 181

11.3 HTTPS setup .. 182

11.3.1 HTTPS setup using the SafeKit PKI .. 183

11.3.2 HTTPS setup using an external PKI .. 188

11.4 User authentication setup .. 192

11.4.1 File-based authentication setup ... 192

11.4.2 LDAP/AD authentication setup ... 195

11.4.3 Client certificate authentication setup using the SafeKit PKI .. 197

11.4.4 Client certificates authentication setup using an external PKI .. 204

 Index

39 A2 19MC 01 11

11.5 Setup example for HTTPS and personal certificate authentication 213

11.5.1 Verify prerequisites .. 213

11.5.2 Setup HTTPS and personal certificate authentication .. 214

11.5.3 Test the web console and distributed command ... 217

11.6 SafeKit PKI advanced configuration ... 218

11.6.1 Configuring with the command line interface ... 218

11.6.2 Renewing certificates ... 221

11.6.3 Revoking certificates .. 222

11.6.4 Commands for certificate generation .. 222

11.6.5 CA web service.. 225

12. Cluster.xml for a SafeKit cluster configuration ... 227

12.1 Cluster.xml file ... 227

12.1.1 Cluster.xml example .. 228

12.1.2 Cluster.xml syntax ... 229

12.1.3 <lans>, <lan>, <node> attributes .. 229

12.2 SafeKit cluster Configuration .. 231

12.2.1 Configuration with the SafeKit web console ... 231

12.2.2 Configuration with command line interface ... 232

12.2.3 Configuration changes .. 232

13. Userconfig.xml for a module configuration ... 235

13.1 Macro definition (<macro> tag) .. 236

13.1.1 <macro> example ... 236

13.1.2 <macro> syntax ... 236

13.1.3 <macro> attributes ... 236

13.2 Farm or mirror module (<service> tag) ... 236

13.2.1 <service> example .. 236

13.2.2 <service> syntax .. 237

13.2.3 <service> attributes .. 237

13.3 Heartbeats (<heart>, <heartbeat > tags) ... 239

13.3.1 <heart> example .. 239

13.3.2 <heart> syntax ... 239

13.3.3 <heart>, <heartbeat > attributes ... 240

13.4 Farm topology (<farm>, <lan> tags) .. 241

13.4.1 <farm> example ... 241

13.4.2 <farm> syntax ... 242

13.4.3 <farm>, <lan> attributes... 242

13.5 Virtual IP address (<vip> tag) .. 243

13.5.1 <vip> example in farm architecture ... 243

13.5.2 <vip> example in mirror architecture .. 243

13.5.3 Alternative to <vip> for servers in different networks .. 243

13.5.4 <vip> syntax .. 244

SafeKit User's Guide

12 39 A2 19MC 01

13.5.5 <vip><interface_list>, <interface>, <virtual_interface>, <real_interface>, <virtual_addr>
attributes ... 245

13.5.6 <loadbalancing_list>, <group>, <cluster>, <host> attributes .. 248

13.5.7 <vip> Load balancing description .. 250

13.6 File replication (<rfs>, <replicated> tags) ... 251

13.6.1 <rfs> example .. 251

13.6.2 <rfs> syntax .. 251

13.6.3 <rfs>, <replicated> attributes .. 252

13.6.4 <rfs> description .. 259

13.7 Enable user scripts (<user>, <var> tags) .. 268

13.7.1 <user> example ... 268

13.7.2 <user> syntax .. 268

13.7.3 <user>, <var> attributes ... 269

13.8 Virtual hostname (<vhost>, <virtualhostname> tags) 269

13.8.1 <vhost> example .. 269

13.8.2 <vhost> syntax .. 269

13.8.3 <vhost>, <virtualhostname> attributes ... 270

13.8.4 <vhost> description .. 270

13.9 Process or service death detection (<errd>, <proc> tags) 271

13.9.1 <errd> example .. 271

13.9.2 <errd> syntax .. 271

13.9.3 <errd>, <proc> attributes ... 272

13.9.4 <errd> commands .. 275

13.10 Checkers (<check> tag) .. 277

13.10.1 <check> example ... 277

13.10.2 <check> syntax .. 278

13.11 TCP checker (<tcp> tags) .. 278

13.11.1 <tcp> example ... 278

13.11.2 <tcp> syntax .. 279

13.11.3 <tcp> attributes ... 279

13.12 Ping checker (<ping> tags) ... 280

13.12.1 <ping> example ... 280

13.12.2 <ping> syntax .. 280

13.12.3 <ping> attributes .. 280

13.13 Interface checker (<intf> tags) .. 281

13.13.1 <intf> example ... 281

13.13.2 <intf> syntax ... 281

13.13.3 <intf> attributes ... 282

13.14 IP checker (<ip> tags) .. 282

13.14.1 <ip> example ... 282

13.14.2 <ip> syntax ... 282

13.14.3 <ip> attributes ... 283

 Index

39 A2 19MC 01 13

13.15 Custom checker (<custom> tags) ... 283

13.15.1 <custom> example ... 283

13.15.2 <custom> syntax .. 284

13.15.3 <custom> attributes .. 284

13.16 Module checker (<module> tags) ... 285

13.16.1 <module> example ... 285

13.16.2 <module> syntax .. 286

13.16.3 <module> attributes ... 286

13.17 Splitbrain checker (<splitbrain> tag)... 287

13.17.1 <splitbrain> example... 287

13.17.2 <splitbrain> syntax ... 287

13.17.3 <splitbrain> attributes ... 287

13.18 Failover machine (<failover> tag) .. 288

13.18.1 <failover> example ... 288

13.18.2 <failover> syntax .. 289

13.18.3 <failover> attributes ... 289

13.18.4 <failover> commands .. 289

13.18.5 Failover rules .. 290

14. User application scripts for the module configuration 293

14.1 List of scripts ... 293

14.1.1 Start/stop scripts... 293

14.1.2 Other scripts ... 294

14.2 Script execution automaton ... 295

14.3 Variables and arguments passed to scripts ... 296

14.4 SafeKit special commands for user scripts .. 296

14.4.1 Commands for Windows ... 296

14.4.2 Commands for Linux .. 297

15. Examples of userconfig.xml and user scripts .. 299

15.1 Generic mirror module example with mirror.safe...................................... 300

15.2 Generic farm module example with farm.safe ... 301

15.3 A Farm module depending on a mirror module example 303

15.4 Dedicated replication network example .. 303

15.5 Network load balancing examples in a farm module 304

15.5.1 TCP load balancing example .. 304

15.5.2 UDP load balancing example ... 305

15.5.3 Multi-group load balancing example ... 305

15.6 Virtual hostname example with vhost.safe ... 306

15.7 Software error detection example with softerrd.safe 308

15.8 TCP checker example .. 310

15.9 Ping checker example .. 310

SafeKit User's Guide

14 39 A2 19MC 01

15.10 Interface checker example ... 310

15.11 IP checker example ... 311

15.12 Custom checker example with customchecker.safe 312

15.13 Module checker example with leader.safe and follower.safe 314

16. SafeKit cluster in the cloud ... 315

16.1 SafeKit cluster in Amazon AWS ... 315

16.1.1 Install a SafeKit cluster with the AWS CloudFormation template for SafeKit 315

16.1.2 Install a SafeKit cluster without the AWS CloudFormation template for SafeKit 317

16.1.3 Mirror cluster in AWS ... 318

16.1.4 Farm cluster in AWS .. 319

16.2 SafeKit cluster in Microsoft Azure .. 321

16.2.1 Install a SafeKit cluster with the Azure resource template for SafeKit 321

16.2.2 Install a SafeKit cluster without the Azure resource template for SafeKit 322

16.2.3 Mirror cluster in Azure .. 323

16.2.4 Farm cluster in Azure ... 325

16.3 SafeKit cluster in Google GCP ... 327

16.3.1 Install a SafeKit cluster with the Google Marketplace solution for SafeKit 327

16.3.2 Install a SafeKit cluster without the Google Marketplace solution for SafeKit 328

16.3.3 Mirror cluster in GCP .. 329

16.3.4 Farm cluster in GCP ... 331

17. Third-Party Software .. 333

Log Messages Index ... 337

Index .. 341

39 A2 19MC 01 15

1. High availability architectures

 1.1 “SafeKit cluster definition” page 15

 1.2 “SafeKit module definition - application integration” page 15

 1.3 “Mirror module: synchronous real time file replication and failover” page 16

 1.4 “Farm module: network load balancing and failover” page 19

 1.5 “Combining mirror and farm modules” page 20

 1.6 “The simplest high availability cluster in the cloud” page 23

1.1 SafeKit cluster definition

A SafeKit cluster is a set of servers where SafeKit is installed and running.

All servers belonging to a given SafeKit cluster share the same cluster configuration (list

of servers and networks used) and communicate with each other’s to have a global view

of SafeKit modules configurations. The same server can not belong to many SafeKit

clusters.

Setting the cluster configuration is a prerequisite to SafeKit modules installation and

configuration since the 7.2 release of SafeKit and of the web console. The cluster

configuration is set through the web console as described in section 3.2 page 37. The

web console provides the ability to administer one or more SafeKit clusters.

1.2 SafeKit module definition - application integration

A SafeKit module is associated with an application. A module is customizable by the user,

and it defines the behavior of the high availability solution for the application. Different

modules can be defined for different applications.

In practice, an application module is an easy-to-setup file that contains:

 a main configuration file userconfig.xml, which lists networks used for

communication between servers, files to replicate in real time (for a mirror module),

virtual IP configuration, network load balancing criteria (for a farm module) and

more...

 application stop and start scripts

SafeKit offers two types of modules detailed in this chapter:

 the mirror module

 the farm module

Combining multiple application modules allows the implementation of advanced

architectures:

 active/active: 2 mirror modules backuping each other

 N-1: N mirror modules with a single backup

 mixed farm and mirror: mixing network load balancing, file replication and failover

SafeKit User's Guide

16 39 A2 19MC 01

1.3 Mirror module: synchronous real time file replication and

failover

1.3.1 File replication and failover

The mirror architecture is a primary-backup high-availability solution that is suitable for

all applications. The application runs on a primary server and is restarted automatically

on a secondary server if the primary server fails.

The mirror architecture can be configured with or without file replication. With its file-

replication function, this architecture is particularly suitable for providing high availability

for back-end applications with critical data to protect against failure. Indeed, the

secondary server data are highly synchronized with the primary server and the failover is

done on the secondary server from the most up-to-date data. If the application

availability is more critical than the application data synchronization, the default policy

can be relaxed by allowing a failover on the secondary server when the time elapsed

since the last synchronization is below a configurable delay.

Microsoft SQL Server.Safe, MySQL.Safe, and Oracle.Safe are examples of "mirror" type

application modules. You can write your own mirror module for your application, based

on the generic module Mirror.Safe.

The failover mechanism works as follows.

1.3.2 Step 1. Normal operation

For replication, only the names of file directories are configured in SafeKit. There are no

pre-requisites on the disk organization for the two servers. Directories to replicate can be

located in the system disk.

Server 1 (PRIM) runs the application.

SafeKit replicates files opened by the application. Only the changes made by the

application in the files are replicated in real time across the network, thus limiting traffic.

Thanks to the synchronous replication of file write operations on the disks of both

servers, no data is lost in case of failure.

SECOND

=

PRIM

 High availability architectures

39 A2 19MC 01 17

1.3.3 Step 2. Failover

When Server 1 fails, Server 2 takes over. SafeKit switches the cluster’s virtual IP address

and restarts the application automatically on Server 2. The application finds the files

replicated by SafeKit in the identical state they were when Server 1 failed, thanks to the

synchronous replication. The application continues to run on Server 2, locally modifying

its files, which are no longer replicated to Server 1.

The switch-over time is equal to the fault-detection time (set to 30 seconds by default)

plus the application start-up time. Unlike disk replication solutions, there is no delay for

remounting file systems and running recovery procedures.

1.3.4 Step 3. Failback and reintegration

Failback involves restarting Server 1 after fixing the problem that caused it to fail.

SafeKit automatically resynchronizes the files, updating only the files that were modified

on Server 2 while Server 1 was stopped.

This reintegration takes place without disturbing the applications, which can continue to

run on Server 2. This is a major feature that differentiates SafeKit from other solutions,

which require you to stop the applications on Server 2 to resynchronize Server 1.

To optimize file reintegration, different cases are considered:

1. The module must have completed the reintegration (on the first start of the module, it

runs a full reintegration) before enabling the tracking of modification into bitmaps

2. If the module was cleanly stopped on the server, then at restart of the secondary, only

the modified zones of modified files are reintegrated, according to a set of modification

tracking bitmaps.

3. If the secondary crashed (power off) or was incorrectly stopped (exception in nfsbox

replication process), the modification bitmaps are not reliable, and are therefore

discarded. All the files bearing a modification timestamp more recent than the last known

synchronization point minus a graceful delay (typically one hour) are reintegrated.

STOP ALONE

≠

Reintegration PRIM

SafeKit User's Guide

18 39 A2 19MC 01

4. A call to the special command second fullsync triggers a full reintegration of all

replicated directories on the secondary when it is restarted.

5. If files have been modified on the primary or secondary server while SafeKit was

stopped, the replicated directories are fully reintegrated on the secondary

1.3.5 Step 4. Return to normal operation

After reintegration, the files are once again in mirror mode, as in step 1. The system is

back in high-availability mode, with the application running on Server 2 and SafeKit

replicating file updates to the backup Server 1.

If the administrator wants to run the application on Server 1, he/she can execute a swap

command either manually at an appropriate time, or automatically through configuration.

1.3.6 Synchronous, fault-tolerant replication that loses no data when
a server fails

There is a significant difference between synchronous replication, as offered by the

SafeKit mirror solution, and asynchronous replication traditionally offered by other file

replication solutions.

With synchronous replication, when a disk IO is performed by the application or by the

file cache system on the primary server onto a replicated file, SafeKit waits for the IO

acknowledgement from the local disk and from the secondary server, before sending the

IO acknowledgement to the application or to the file system cache.

The synchronous, in real time, replication of files updated by an application eliminates

the loss of data in case of server failure. Synchronous replication ensures that any data

committed on a disk by a transactional application is also present on the secondary

server.

The bandwidth required to implement synchronous data replication is in the order of

magnitude of a typical modern LAN, or extended LAN between two computer rooms

located a few kilometers apart.

With asynchronous replication implemented by other solutions, the IOs are placed in a

queue on the primary server but the primary server does not wait for the IO

acknowledgments of the secondary server. So, the data that did not have time to be

copied across the network on the second server is lost if the first server fails. In

particular, a transactional application loses committed data in case of failure.

Asynchronous replication can be used for data replication through a low-speed WAN, to

back up data remotely over more than 100 kilometers.

SafeKit provides an asynchronous solution with no data loss, ensuring the asynchrony

not on the primary machine but on the secondary one. In this solution, SafeKit always

waits for the acknowledgement of the two machines before sending the

acknowledgement to the application or the system cache. But on the secondary, there

SECOND PRIM

=

 High availability architectures

39 A2 19MC 01 19

are 2 options asynchronous or synchronous. In the asynchronous case (option <rfs

async="second">), the secondary sends the acknowledgement to the primary upon

receipt of the IO and writes to disk after. In the synchronous case (<rfs async="none">),

the secondary writes the IO to disk and then sends the acknowledgement to the primary.

The async="none" mode is required if we consider a simultaneous double power outage

of two servers, with inability to restart the former primary server and requirement to re-

start on the secondary.

1.4 Farm module: network load balancing and failover

1.4.1 Network load balancing and failover

The farm architecture provides both network load balancing, through transparent

distribution of network traffic, and software and hardware failover. This architecture

provides a simple solution for increasing system load. The same application runs on each

server, and the load is balanced by the distribution of network activity between the

different servers of the farm.

Farm architecture accommodates/implements well with front-end applications like web

services. Apache_farm.Safe and Microsoft IIS_farm.safe are examples of farm application

modules. You can make your own farm module, modified to suit your application, from

the generic module Farm.safe.

1.4.2 Principle of a virtual IP address with network load balancing

The virtual IP address is configured locally on each server of the farm. The input traffic

for this address is split among them at low level by a filter inside each server's kernel.

The load balancing algorithm inside the filter is based on the identity of the client packets

(client IP address, client TCP port). Depending on the identity of the client packet input, a

single filter instance in a server farm transmits the packet to the upper network layers;

the other filter instances in other servers drop it. Once a packet is accepted by the filter

on a server, only the CPU and memory of this server are used by the application that

responds to the request of the client. The output messages are sent directly from the

application server to the client.

If a server fails, the SafeKit membership protocol reconfigures the filters in the farm to

re-balance the traffic on the remaining available servers.

1.4.3 Load balancing for stateful or stateless web services

With a stateful server, there is session affinity. The same client must be connected to the

same server on multiple HTTP/TCP sessions to retrieve its context from the server. In

this case, the SafeKit load balancing rule is configured on the client IP address. Thus, the

same client is always connected to the same server on multiple TCP sessions. And

different clients are distributed across different servers in the farm. This configuration is

used when there is a need for session affinity.

UP UP UP
Farm of 3

servers

SafeKit User's Guide

20 39 A2 19MC 01

With a stateless server, there is no session affinity. The same client can be connected to

different servers in the farm on multiple HTTP/TCP sessions; because there is no context

stored locally on a server from one session to another. In this case, the SafeKit load

balancing rule criteria is the TCP client session identity. This configuration is the best

solution to distribute sessions between servers, but it can only loadbalance a TCP service

without session affinity.

Other load balancing algorithms are available for UDP services.

1.5 Combining mirror and farm modules

1.5.1 Active/Active: 2 mirror modules backuping each other

Two active servers mirroring each other

In an active / active architecture, there are two servers and two mirror application

modules in mutual takeover (Appli1.Safe and Appli2.Safe). Each application server is a

backup of the other server.

If one application server fails, both applications will be active on the same physical

server. After restart of the failed server, its application will run again on its default

primary server.

A mutual takeover cluster is a more economical solution than two separate mirror

clusters, because there is no need to invest in back-up servers that will spend most of

their time sitting idle waiting for the primary server to fail. Note that during a failure, the

remaining server must be able to handle the combined workload of both applications.

Appli1 Users
Appli1

Users

Appli2

SECOND1

Appli2

SECOND2

PRIM1

PRIM2

 High availability architectures

39 A2 19MC 01 21

1.5.2 N-to-1: N mirror modules with a single backup

Shared backup for multiple active servers

In N-to-1 architecture, there are N mirror application modules installed on N primary

servers and one backup server.

If one of the N active servers fails, the single backup server restarts the module of the

failed server. Once the problem is fixed and the failed server is restarted, the application

switches back to its original server.

In case of failure, unlike the active/active architecture, the backup server doesn't have to

handle a double workload when a primary server fails. Assuming that there is only one

failure at a time - the solution can support multiple primary server failures at the same

time, but in this case the single back-up server will have to handle the combined

workload of all the failed servers.

SECOND3

Appli1

Users
Appli1

SECOND1

Appli2

Users
Appli2

SECOND2

Appli3
Users
Appli3

PRIM1

PRIM2

PRIM3

SafeKit User's Guide

22 39 A2 19MC 01

1.5.3 Mixed farm/mirror: network load balancing, file replication,
failover

Network load balancing, file replication and failover

You can mix farm and mirror application modules on the same cluster of servers.

This option allows you to implement a multi-tier application architecture, such as

Apache_farm.Safe (farm architecture with load balancing and failover) and MySQL.safe

(mirror architecture with file replication and failover) on the same application servers.

As a result, load balancing, file replication and failover are managed coherently on the

same servers. Specific to SafeKit, this mixed architecture is unique on the market!

Apache UP Apache UP

Apache UP

MySQL
PRIM

SECOND

Mirror of MySQL on 2 servers

Farm of Apache on 3 servers

 High availability architectures

39 A2 19MC 01 23

1.6 The simplest high availability cluster in the cloud

SafeKit brings in the Microsoft Azure, Amazon AWS and Google clouds the simplest

solution for a high availability cluster. It can be implemented on existing virtual machines

or on a new virtual infrastructure, that you create by simply clicking on a button that

deploys and configures everything for you in Azure or AWS clouds.

For a full description, see section 16 page 315.

1.6.1 Mirror cluster in Microsoft Azure, Amazon AWS and Google GCP

SafeKit brings in the Azure, Aws and GCP clouds the simplest solution for a high

availability cluster with real-time replication and failover (mirror module).

For a quick start, refer to mirror cluster in Azure, mirror cluster in AWS or mirror cluster

in GCP.

 the critical application is running on the PRIM server

 users are connected to a primary/secondary virtual IP address which is configured in

the cloud load balancer

 SafeKit brings a generic checker for the load balancer. On the PRIM server, the

checker returns OK to the load balancer and NOK on the SECOND server

 in each server, SafeKit monitors the critical application with process checkers and

custom checkers

 SafeKit automatically restarts the critical application when there is a software failure

or a hardware failure thanks to restart scripts

https://www.evidian.com/products/high-availability-software-for-application-clustering/azure-high-availability-cluster-synchronous-replication-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/aws-high-availability-cluster-synchronous-replication-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/gcp-high-availability-cluster-synchronous-replication-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/gcp-high-availability-cluster-synchronous-replication-failover/

SafeKit User's Guide

24 39 A2 19MC 01

 SafeKit makes synchronous real-time replication of files containing critical data

 a connector for the SafeKit web console is installed in each server. Thus, the high

availability cluster can be managed in a very simple way to avoid human errors

1.6.2 Farm cluster in Microsoft Azure, Amazon AWS and Google GCP

SafeKit brings in the Azure, AWS and Google clouds the simplest solution for a high

availability cluster with load balancing and failover (farm module).

For a quick start, refer to farm cluster in Azure, farm cluster in AWS or farm cluster in

GCP.

 the critical application is running in all servers of the farm

 users are connected to a virtual IP address which is configured in the cloud load

balancer

 SafeKit brings a generic checker for the load balancer. When the farm module is

stopped in a server, the checker returns NOK to the load balancer which stops the

load balancing of requests to the server. The same behavior happens when there is a

hardware failure

 in each server, SafeKit monitors the critical application with process checkers and

custom checkers

 SafeKit automatically restarts the critical application in a server when there is a

software failure thanks to restart scripts

 a connector for the SafeKit web console is installed in each server. Thus, the load

balancing cluster can be managed in a very simple way to avoid human errors

https://www.evidian.com/products/high-availability-software-for-application-clustering/azure-load-balancing-cluster-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/aws-load-balancing-cluster-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/gcp-load-balancing-cluster-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/gcp-load-balancing-cluster-failover/

 Installation

39 A2 19MC 01 25

2. Installation

 2.1 “SafeKit install” page 25

 2.2 “Mirror installation recommendation” page 29

 2.3 “Farm installation recommendation” page 30

 2.4 “SafeKit upgrade” page 30

 2.5 “SafeKit full uninstall” page 32

 2.6 “SafeKit documentation” page 33

2.1 SafeKit install

2.1.1 Download the package

1. Connect to https://support.evidian.com/safekit

2. Go to <Version 7.5>/Platforms/<Your platform>/Current versions

3. Download the 64-bit package

2.1.2 Installation directories and disk space provisioning

SafeKit is installed in:

SAFE

 in Windows

SAFE=C:\safekit

if %SYSTEMDRIVE%=C:

 in Linux

SAFE=/opt/safekit

Minimum free disk space: 80MB

SAFEVAR

 in Windows

SAFEVAR= C:\safekit\var

if %SYSTEMDRIVE%=C:

 in Linux

SAFEVAR=/var/safekit

Minimum free disk space: 20MB + at

least 20MB (up to 3 GB) per module

for dumps

2.1.3 Install procedure

2.1.3.1 On Windows as administrator

 SafeKit package install

1. log-in as administrator

2. locate the downloaded file safekitwindows_7_5_x_y.msi

3. install in interactive mode by double-clicking it and go through the installer wizard

or

https://support.evidian.com/safekit

SafeKit User's Guide

26 39 A2 19MC 01

3. install in non-interactive mode, by executing in PowerShell console as

administrator:

msiexec /qn /i safekitwindows_7_5_x_y.msi

 Firewall setup

1. in a PowerShell console as administrator

2. run SAFE/private/bin/firewallcfg add

It configures the Microsoft firewall for SafeKit. For details or other firewalls, see

section 10.3 page 156

 Web service initialization for the SafeKit console and distributed commands

This step is mandatory to initialize the default configuration of the web service. Since

SafeKit 7.5, the web service requires authentication to access the service. This script

makes it easy to implement by initializing it with the admin user and the given

password pwd, for example.

1. in a PowerShell console as administrator

2. run SAFE/private/bin/webservercfg -passwd pwd

This then allows to access to all the web console's features, by logging in with

admin/pwd, and to run distributed commands. For details, see 11.2.1 page 179.

The password must be identical on all nodes that belong to the same

SafeKit cluster. Otherwise, web console and distributed commands will fail

with authentication errors.

On upgrade, this step can be skipped if it has already been done in a previous

version of SafeKit 7.5. If it is reapplied, it will reset the password with the

new value.

2.1.3.2 On Linux as root

 SafeKit package install

1. log-in as root

2. locate the downloaded file safekitlinux_7_5_x_y.bin

auto extractible zip file

3. run chmod +x safekitlinux_7_5_x_y.bin

4. run ./safekitlinux_7_5_x_y.bin

it extracts the package and the safekitinstall script

5. install in interactive mode by executing ./safekitinstall

During the installation:

✓ reply to “Do you accept that SafeKit automatically configure the local

firewall to open these ports (yes|no)?”

 Installation

39 A2 19MC 01 27

If you answer yes, it configures firewalld or iptable Linux firewall for

SafeKit. For details or other firewalls, see section 10.3 page 156.

✓ reply to “Please enter a password or "no" if you want to set it later :”

This step is mandatory to initialize the default configuration of the web

service. Since SafeKit 7.5, the web service requires authentication to

access the service.

It initializes it with the admin user and the given password pwd, for

instance. It then allows to access to all the web console's features, by

logging in with admin/pwd, and run distributed commands. For details, see

11.2.1 page 179.

The password must be identical on all nodes that belong to the

same SafeKit cluster. Otherwise, web console and distributed

commands will fail with authentication errors.

or

5. install in non-interactive mode, by executing:

safekitinstall -q

Use the option -nofirewall for disabling the firewall automatic setup

Use the option -passwd pwd for initializing the web service authentication (where

pwd is the password set for the admin user)

 Firewall setup

No action required when firewall automatic configuration has been performed during

install. Otherwise see section 10.3 page 156.

 Web service initialization for the SafeKit console and distributed commands

No action required when the web service initialization has been performed during

install. Otherwise, see section 11.2.1 page 179.

2.1.4 Use the SafeKit console or command line interface

Once installed, the SafeKit cluster must be defined. Then modules can be installed,

configured, and administered. All these actions can be done with the SafeKit console or

the command line interface.

 The SafeKit console

1. start a web browser

2. connect it to the URL http://servername:9010 (where servername is the name

or IP address of one of the SafeKit nodes)

3. in the login page, enter admin as user’s name and the password you gave on

initialization as password (e.g., pwd). Then click on Connect

4. the loaded page contains all the tabs that correspond to the Admin role by default

Admin role: Configuration, Control, Monitoring and Advanced

Configuration

For details see section 3 page 35

http://servername:9010/
file:///C:/LocalSandbox/safekit_docs/src/docs/Manual_7_4_0/UserGuide/safekit74userguideen.doc%23Webconsole

SafeKit User's Guide

28 39 A2 19MC 01

 The SafeKit command line interface

It relies on the single command safekit located into the SAFE directory (in Windows,

SAFE=C:\safekit if %SYSTEMDRIVE%=C: ; in Linux, SAFE=/opt/safekit). Almost all

safekit commands can be applied locally or on a list of nodes in the SafeKit cluster.

This is called distributed command.

For details, see section 9 page 141.

2.1.5 SafeKit license keys

 If you do not install any license keys, the product will stop every 3 days

 You can download a one-month trial key (which is accepted on any hostname/any

OS) from the following address: http://www.evidian.com/safekit/requestevalkey.php

 To obtain permanent keys see section 8.2 page 134

 Save the key into the SAFE/conf/license.txt file on each server

 Check the key conformance with the command safekit level

2.1.6 System specific procedures and characteristics

2.1.6.1 Windows

 Apply a special procedure to properly stop SafeKit modules at machine shutdown and

to start safeadmin service at boot: see section 10.4 page 161.

 For network interfaces with teaming and with SafeKit load balancing, it is necessary

to uncheck "Vip" on physical network interfaces of teaming and keep it checked only

on teaming virtual interface.

2.1.6.2 Linux

 In RedHat/CentOS the following packages are required:

✓ for SafeKit core: coreutils, sed, gawk, bind-utils

✓ for file replication: nfs-utils

✓ for load balancing: make, gcc, kernel-devel and elfutils-libelf-devel in CentOS 8

 The user "safekit" and a group "safekit" are created: all users of the "safekit" group +

"root" can execute SafeKit command lines

 For a farm with SafeKit load balancing on a bonding interface, no ARP should be set in

the bonding configuration. Otherwise the association <virtual IP address, invisible

virtual MAC address> is broken in client ARP caches with physical MAC address of the

bonding interface: see section 4.3.4 page 80

 For a mirror, if using file replication, remove the logwatch package (rpm -e

logwatch); otherwise NFS service and SafeKit are stopped every night

http://www.evidian.com/safekit/requestevalkey.php

 Installation

39 A2 19MC 01 29

2.2 Mirror installation recommendation

ip 1.1 ip 1.2

virtual ip = ip 1.10

mirror(app1)= app1

 files1 files1

2.2.1 Hardware prerequisites

 2 servers with the same Operating System

 Supported OS: https://support.evidian.com/supported_versions/#safekit

 Disk drive with write-back cache recommended for the performance of the IOs

2.2.2 Network prerequisites

 1 physical IP address per server (ip 1.1 and ip 1.2)

 If you need to set a virtual IP address (ip 1.10), both servers must be in the same IP

network with the standard SafeKit configuration (LAN or extended LAN between two

remote computer rooms). For setting a virtual IP address with servers in different IP

networks, see section 13.5.3 page 243.

2.2.3 Application prerequisites

 The application is installed and starts on both servers

 Application can be started and stopped using command lines

 On Linux, command lines like service "service" start|stop or su –user "appli-
cmd"

 On Windows, command lines like net start|stop "service"

 If necessary, application with a procedure to recover after crash

 Remove automatic application start at boot and configure the boot start of the

module instead

2.2.4 File replication prerequisites

 File directories that will be replicated are created on both servers

 They are located at the same place on both servers in the file tree

 It is better to synchronize clocks of both server for file replication (NTP protocol)

 On Linux, align uids/gids on both servers for owners of replicated directories/files

 See also system specific procedures and characteristics in section 2.1.6 page 28

https://support.evidian.com/supported_versions/#safekit

SafeKit User's Guide

30 39 A2 19MC 01

2.3 Farm installation recommendation

ip 1.1 ip 1.2 ip 1.3

virtual IP = ip 1.20 ip 1.20 ip 1.20

farm (app2) = app2 app2 app2

2.3.1 Hardware prerequisites

 At least 2 servers with the same Operating System

 Supported OS: https://support.evidian.com/supported_versions/#safekit

 Linux: kernel compilation tools installed for vip kernel module

2.3.2 Network prerequisites

 1 physical IP address per server (ip 1.1, ip 1.2, ip 1.3)

 If you need to set a virtual IP address (ip 1.20), servers must be in the same IP

network with the standard SafeKit configuration (same LAN or extended LAN between

remote computer rooms). For setting a virtual IP address with servers in different IP

networks, see section 13.5.3 page 243.

 See also system specific procedures and characteristics in section 2.1.6 page 28

2.3.3 Application prerequisites

The same prerequisites as for a mirror module described in section 2.2.3 page 29

2.4 SafeKit upgrade

2.4.1 When proceed to an upgrade?

If you encounter a problem with SafeKit, see the Software Release Bulletin (English –

HTML) on https://support.evidian.com/safekit containing the list of fixes on the product

If you want to take advantage of some new features, see the Release Notes on

https://support.evidian.com/safekit. This document also tells you if you are in the case of

a major upgrade (ex. 7.4 to 7.5) which requires a different procedure from the one

presented here.

The upgrade procedure consists in uninstalling the old package and then installing the

new package. All servers should be upgraded at the same time.

2.4.2 Prepare the upgrade

1. note the state "on" or "off" of services and modules started automatically at boot
safekit boot webstatus; safekit boot snmpstatus; safekit boot status -m

AM (where AM is the name of the module).

Since SafeKit 7.5, the start at boot of the module can be defined in its

configuration file. If so, the use of the safekit boot command becomes

unnecessary.

https://support.evidian.com/supported_versions/#safekit
https://support.evidian.com/safekit
https://support.evidian.com/safekit

 Installation

39 A2 19MC 01 31

2. for a mirror module

note the server in the ALONE or PRIM status to know which server holds the up-to-

date replicated files

3. optionally, take snapshots of modules

Uninstalling/reinstalling will reset SafeKit logs and dumps of each module. If you want

to keep this information (logs and last 3 dumps and configurations), run the

command safekit snapshot –m AM /path/snapshot_xx.zip (replace AM by the

module name)

2.4.3 Uninstall procedure

On Windows as administrator and on Linux as root:

1. stop all modules using the command safekit shutdown

For a mirror in the PRIM-SECOND status, stop first the SECOND server to avoid an

unnecessary failover

2. close all editors, file explorers, shells, or terminal under SAFE and SAFEVAR (to avoid

package uninstallation error)

3. uninstall SafeKit package

 in Windows, using the Control Panel-Add/Remove Programs applet

 in Linux, using the command safekit uninstall

4. undo all configurations that you have done manually for the firewall setup (see

section 10.3 page 156)

Uninstalling SafeKit includes creating a backup of the installed modules in

SAFE/Application_Modules/backup, then unconfiguring them.

2.4.4 Reinstall procedure

1. install the new package as described in section 2.1 page 25

2. check with the command safekit level the installed SafeKit version and the validity

of the license (which has not been uninstalled)

If you have a problem with the new package and the old key, take a temporary

license: see section 2.1.5 page 28

3. if you use the web console, clear the browser cache and refresh pages in the web

browser

4. reconfigure all the installed modules

web console/ Configuration/ on the module/ Edit the configuration/ or the

command safekit config –m AM (replace AM by the module name)

5. if necessary, reconfigure the automatic start of modules at boot.

Since SafeKit 7.5, the start at boot of the module can be defined in its configuration

file. If so, skip this step. Otherwise, run web console/ Control/ on the node/Admin

submenu/Configure boot start/ or command safekit boot –m AM on (replace AM by

the module name)

Moreover, in the special cases:

 the automatic start at boot of the safewebserver service was disabled

SafeKit User's Guide

32 39 A2 19MC 01

reconfigure it with the command safekit boot weboff

 the automatic start at boot of the safeagent service was enabled

reconfigure it with the command safekit boot snmpon

 SAFE/web/conf/ or SAFE/snmp/conf/snmpd.conf files were customized

set back customizations in newly installed files (customizations have been saved in

SAFE/web/conf/<file name>.conf.<date> and SAFE/snmp/conf/snmpd.<date>)

To restart modules after upgrade:

✓ farm module

web console/ Control/ on the module/ Start/ or command safekit start –

m AM (replace AM by the module name)

✓ mirror module

On the server that has the up-to-date replicated files (former PRIM or ALONE): web

console/ Control/ on the node/Expert/Force start/as prim/ or command

safekit prim –m AM (replace AM by the module name)

On the other server (former SECOND): web console/ Control/ on the

node/Expert/Force start/as second/ or command safekit second –m AM (replace

AM by the module name)

2.5 SafeKit full uninstall

For completely removing the SafeKit package, follow the procedure described below.

2.5.1 On Windows as administrator

1. stop all modules using the command safekit shutdown (SAFE=C:\safekit if

%SYSTEMDRIVE%=C:)

2. close all editors, file explorers, shells, or cmd under SAFE and SAFEVAR (to avoid

package uninstallation error)

3. uninstall SafeKit using the Control Panel-Add/Remove Programs applet

4. reboot the server

5. delete the folder SAFE that is the installation directory of the previous install of

SafeKit

6. undo all configurations that you have done for SafeKit boot/shutdown (see section

10.4 page 161)

7. undo all configurations that you have done for firewalls rules setting (see section 10.3

page 156)

8. if present, delete the user created by the previous install (default is SafeKitUser) with

the command: net user SafeKitUser /delete

2.5.2 On Linux as root

1. stop all modules using the command safekit shutdown (SAFE=/opt/safekit)

2. uninstall SafeKit using the safekit uninstall –all command and answer yes when

prompted to delete all SafeKit folders

 Installation

39 A2 19MC 01 33

3. reboot the server

4. undo all configurations that you have done for firewalls rules setting

See section 10.3 page 156

2.6 SafeKit documentation

 SafeKit User's Guide (English, French - PDF and HTML)

It is this guide. Be sure to consult the guide corresponding to your SafeKit release

number.

Available at https://support.evidian.com/safekit

 SafeKit Release Notes (English –PDF)

It presents:

✓ latest install instructions

✓ major changes

✓ restrictions and known problems

✓ migration instructions

Available at https://support.evidian.com/safekit

 Software Release Bulletin (English – HTML)

It details:

✓ up-to-date list of supported operating systems

✓ list of fixes and changes

Available at https://support.evidian.com/safekit

 SafeKit Knowledge Base (English – HTML)

It provides a selected list of KBs. Other KBs are available but require an account on

https://support.evidian.com. See access to Evidian support described in section 8

page 133

Available at https://support.evidian.com/safekit

 SafeKit training

Available at https://www.evidian.com/products/high-availability-software-for-

application-clustering/business-continuity-training-courses/

https://support.evidian.com/safekit
https://support.evidian.com/safekit
https://support.evidian.com/safekit
https://support.evidian.com/
https://support.evidian.com/safekit
https://www.evidian.com/products/high-availability-software-for-application-clustering/business-continuity-training-courses/
https://www.evidian.com/products/high-availability-software-for-application-clustering/business-continuity-training-courses/

SafeKit User's Guide

34 39 A2 19MC 01

39 A2 19MC 01 35

3. The SafeKit web console

 3.1 “Start the web console” page 35

 3.2 “Configure a SafeKit Cluster” page 37

 3.3 “Configure a module” page 41

 3.4 “Control a module” page 50

 3.5 “Snapshots of module for support” page 54

 3.6 “Monitor modules” page 55

 3.7 “Manage modules” page 56

 3.8 “Create a new module template (.safe) for deployments” page 63

 3.9 “Secure access to the web console” page 65

 3.10 “The clusters inventory of the web console” page 66

See the Release Notes, at https://support.evidian.com/safekit, for

restrictions and known problems with the SafeKit web console.

3.1 Start the web console

Since SafeKit 7.5, by default, access to the web console requires the user to authenticate

himself with a name and password. On SafeKit install, you had to initialize it with the

user admin and assign a password. This admin name and password are sufficient to

access all the console's features. For more details on this configuration, see 11.2.1 page

179.

3.1.1 Start a web browser

 The web browser runs on any allowed SafeKit nodes or workstation that can reach the

SafeKit servers over the network.

 Network, firewall and proxy configuration must allow access to the administration

network of all the servers that are administered with the web console

 JavaScript must be available and enabled in the web browser

 Tested browsers are Microsoft Edge, Firefox, and Chrome. The web console can also

run-on smartphone and tablet. See the Release Notes on

https://support.evidian.com/safekit for the supported versions of browsers

 To avoid security popups in Microsoft Edge, you may add the SafeKit servers

addresses into the Intranet or Trusted zone

 The messages in the web console are displayed in French, English, Japanese

languages, according to the preferred language configured into the web browser (for

not supported languages, English is displayed). The message catalogs are in

SAFE/web/htdocs/jquery.lang/langpack/.

 After SafeKit upgrade, you must clear the browser’s cache to get the new web

console pages. A quick way to do this is a keyboard shortcut that works on IE,

Firefox, and Chrome. Open the browser to any web page and hold CTRL and SHIFT

https://support.evidian.com/safekit
https://support.evidian.com/safekit

SafeKit User's Guide

36 39 A2 19MC 01

while tapping the DELETE key. The dialog box will open to clear the browser. Set it to

clear everything and click Clear Now or Delete at the bottom. Close the browser, stop

all background processes that may be still running and re-open it fresh to reload the

web console.

3.1.2 Connect to a SafeKit server

The web console permits to administer one or more SafeKit clusters. A SafeKit cluster is

a set of servers where SafeKit is installed and running. All servers belonging to a given

SafeKit cluster share the same cluster configuration (list of servers and networks used)

and communicate with each other’s to have a global view of SafeKit modules

configurations. The same server can not belong to many SafeKit clusters.

To manage a SafeKit cluster, connect to the default URL http://servername:9010

(servername is the name or IP address of one of the nodes in the cluster). If HTTPS is

configured, there is an automatic redirection to https://servername:9453.

The localhost and 127.0.0.1 values for servername are not allowed. If used, there is

redirection on a page that requires the fill of another address or DNS name for the

server.

The web console provides:

 Cluster Configuration panel: configure the servers that belong to the SafeKit cluster

(see section 3.2 page 37)

 Configuration tab: module quick installation and configuration on the cluster (see

section 3.3 page 41)

 Control tab: runtime administration of modules of the cluster (start/stop…) (see

section 3.4 page 50)

 Monitoring tab: status monitoring of modules of the cluster (see section 3.6 page

55)

 Advanced Configuration tab: expert configuration and management of modules of

the cluster (see section 3.7 page 56)

 Cluster inventory panel. By default, there is only one managed cluster that is named

cluster1. If you want to change this default name or manage another cluster with

the same browser window, see section 3.10 page 66.

The web console offers contextual help by clicking on the icon.

http://servername:9010/

 The SafeKit web console

39 A2 19MC 01 37

3.2 Configure a SafeKit Cluster

The SafeKit cluster must be defined before installing, configuring, or starting a SafeKit

module. A Safekit cluster is defined by a set of networks and the addresses, on these

networks, of a group of SafeKit servers. These servers implement one or more modules.

Each server is not necessarily connected to all the networks, but at least one.

With the Cluster Configuration panel, you can manage its configuration. In Control and

 Monitoring tabs, you can only display the current configuration of the SafeKit cluster.

In Configuration and Advanced Configuration tabs, you can edit the configuration

and apply it on all the nodes that belong to the cluster. The SafeKit cluster configuration

is saved on the servers’ side into the cluster.xml file (see section 12 page 227). For a

correct behavior, it is required to apply the same cluster configuration on all the nodes. If

you need to re-apply the configuration, switch to the Advanced edit mode, then click on

the Apply button.

You must fully define the SafeKit cluster configuration before installing and

configuring modules since the modification of the SafeKit cluster can affect the

configuration or the execution of installed modules.

3.2.1 Simple configuration

The simplest cluster configuration consists in defining all the nodes and their address on

one network. For displaying or configuring the list of SafeKit cluster nodes:

 Click on Configuration or Advanced Configuration tabs

 Click on Cluster Configuration to open the panel

SafeKit User's Guide

38 39 A2 19MC 01

 (1) Click on the New node button for adding a new node into the cluster

 (2) Fill in the administration IP address of the node and then press the Tab key to

check the server connectivity and automatically insert the server hostname. The

protocol and port used to access the node is the same as the one used to connect to

the SafeKit web service.

Do not use localhost or 127.0.0.1 as IP address.

The server connected to the SafeKit web console must be included into the

SafeKit cluster.

 (3) Change the node name if necessary. This name is the one that will be used by the

SafeKit administration service for uniquely identifying a SafeKit server. It is also the

one displayed into the SafeKit web console.

The name field background color reflects the reachability of the node.

Green color means that the SafeKit server is available.

Red color means that the web console had no reply from the server

within the timeout delay. Fix the problem to be able to administer this

node. It may be a bad address, a network or host failure, a bad

configuration of the web browser or the firewall, the stop of the SafeKit

web service on the node. For solving the problem, refer to the section

7.1 page 109.

 (4) Click on the – button for removing the node from the SafeKit cluster.

When removing a node from the cluster, all the modules installed on this node

will not be any more usable.

 (5) Once the configuration is completed, click on the Apply button for saving changes

and applying the configuration on all nodes. Click on the Reload button to discard

changes and reload the initial configuration. When the Apply button becomes blue

Apply, it means that some changes have been done and must be applied.

 (6) Click on Cluster Configuration to close the panel.

 The SafeKit web console

39 A2 19MC 01 39

3.2.2 Advanced configuration

With Simple edit mode, you can define only one network, that is the one used to connect

the web console.

You can define more networks, for communication redundancy, by switching to the

Advanced edit mode. The node name is used to identify the various IP addresses for the

same node. The lan name provides the network topology abstraction and is used for

configuring the networks used by a module.

 Click on Configuration or Advanced Configuration tabs

 Click on Cluster Configuration to open the panel

 Click on the Advanced radio button

 The Cluster Nodes panel is the same as the one in simple edit mode

SafeKit User's Guide

40 39 A2 19MC 01

 The Cluster Networks panel displays the network that the web console connected to

and then the additional networks

 (1) Click on the New lan button for adding a new network

 (2) Fill in a friendly name for the new network and set the IP address for the SafeKit

cluster nodes on the new network. The lan name is used for configuring networks

used by a module (see section 3.3.2.2 page 47).

 (3) Check or uncheck the boxes to specify the network use:

✓ a Framework network is a network used for internal communications within

the cluster. These are global cluster and module internal communications, as

well as communications for executing distributed commands. You must define

at least one framework network that includes all nodes in the cluster. It is

recommended to define several framework networks to tolerate at least one

network failure.

✓ a Console network is a network on which the web console can connect for

communicating with cluster nodes. This network must include all the cluster

nodes. You can define multiple console networks according to administrative

requirements and network topology.

 (4) Click on the – button for removing the network

When removing a lan, all the modules configured for using this lan will need to

be stopped and reconfigured.

 (5) Once the configuration is completed, click on the Apply button for saving and

applying the configuration on all nodes. Click on the Reload button to discard changes

and reload the initial configuration. When the Apply button gets blue Apply, it means

that some changes have been done.

 Click on Cluster Configuration to close the panel

3.2.3 Configuration with command line

The command line equivalent to the SafeKit cluster configuration is described below.

Replace node1 and node2 by the name of your cluster nodes set into the SafeKit cluster

configuration.

1. Log as administrator/root and open a command shell window on one node

2. Edit the file SAFEVAR/cluster/cluster.xml

SAFEVAR is C:\safekit\var on Windows if %SYSTEMDRIVE%=C:, /var/safekit on

Linux

 The SafeKit web console

39 A2 19MC 01 41

The file content is for instance:

<?xml version="1.0" encoding="utf-8"?>

<cluster>

<lans>

 <lan name="default" console="on" framework="on">

 <node name="node1" addr="10.0.0.103"/>

 <node name="node2" addr="10.0.0.104"/>

 </lan>

 <lan name="private" console="on" framework="on">

 <node name="node1" addr="10.1.0.103"/>

 <node name="node2" addr="10.1.0.104"/>

 </lan>

</lans>

</cluster>

3. Run safekit cluster config

To locally apply the cluster configuration in SAFEVAR/cluster/cluster.xml

4. Run safekit -H "*" -G

to apply the local configuration on all SafeKit nodes defined into cluster.xml

For more details, refer to section 12 page 227.

3.3 Configure a module

This tab offers, thanks to the Configuration wizard, the quick installation and

configuration of a new module or the quick reconfiguration of a module already installed.

The Configuration wizard allows setting only major parameters and user scripts edition.

If you need to edit other userconfig.xml fields or advanced management, complete

the quick configuration then go to the Advanced Configuration tab (see section 3.7.1

page 58).

When reconfiguring an installed module, the Configuration wizard forces to apply the

configuration on all the nodes of the module. If you need to apply it only on a subset,

use instead the Advanced configuration wizard available in the Advanced

Configuration tab.

 In Configuration tab

SafeKit User's Guide

42 39 A2 19MC 01

5. Install and configure a new module

Click on to open the panel for installing and configuring a new module.

For each SafeKit cluster node, it lists the modules templates that are stored on the

server.

✓ Generic modules

Lists the generic modules mirror.safe and farm.safe. Use a generic module for

integrating a new application based on a mirror or farm architecture. These

modules are stored in the SAFE/Application_Modules/generic directory on the

server side.

✓ Application modules

Lists all the modules customized for a specific business application. These modules

are stored into SAFE/Application_Modules/demo (that may not exist if empty)

✓ Advanced modules

Lists all advanced modules for advanced integration. These modules are stored

into SAFE/Application_Modules/other.

✓ Backup modules

Lists all the modules stored into SAFE/Application_Modules/backup. This

directory is used for saving module’s configuration on module uninstall.

You can make your module template available from Configuration tab by copying

the template into one of these areas (see section 3.8 page 63).

 The SafeKit web console

39 A2 19MC 01 43

6. Configure and monitor installed modules

Click on to open the panel for re-configuring and monitoring installed modules.

This panel displays the modules installed (under the SAFE/modules directory) on all the

nodes set into the SafeKit cluster (see section 3.2 page 37), and their current state. The

list is empty after a fresh SafeKit install. Installed modules can be re-configured to

modify general parameters for instance, started, stopped, or uninstalled.

3.3.1 Select the module to configure

 In Configuration tab

 Install and configure a new module

Click on the name of the module to configure among the generic, application,

advanced or backup modules. You first have to set the new module name. Then click

on the - button to open the Configuration wizard.

 Configure and monitor installed modules

For installed modules, click on the button (next to the module name) for

opening the actions menu and choose Edit the configuration. First, select the node

that you want to use for editing the configuration (this node is called the source

server). Then click on the Confirm button to open the Configuration wizard that offers

the configuration files edition from the selected node.

The configuration wizard is a multi-step interface that helps you configure and install a

module on one or many servers of your cluster. You just have to fill intended parameters

and click on the button to go to the next step.

For a first test of SafeKit, configure a new generic module mirror.safe or farm.safe.

SafeKit User's Guide

44 39 A2 19MC 01

3.3.2 Configuration wizard

The Configuration wizard is (example of the new module configuration from mirror.safe

template):

The wizard walks you through the process of configuring a module:

 3.3.2.1 “Select nodes and networks for the module” page 44

This tab is used to set the nodes on which the module is configured. It also defines

the networks for the module.

 3.3.2.2 “Edit the configuration of the module” page 47

This tab allows setting only major parameters for quick configuration of the module.

 3.3.2.3 “Apply the configuration of the module” page 48

In this tab, you can apply the changes to take effect. It forces to apply the

configuration on all the nodes (set into the first tab) and requires that the module is

stopped on all of them.

 3.3.2.4 “Check the configuration result” page 49

This tab shows the result of the previous step.

 3.3.2.5 “Finish” page 49

If you close the Configuration wizard before applying the configuration, it

aborts the module configuration. But if you have made changes in previous

tabs and have validated, these changes have been saved on the source

server.

Once you click on the button to apply the configuration, this one cannot be

cancelled.

3.3.2.1 Select nodes and networks for the module

 In Configuration wizard

 Select Nodes and Networks tab

This form is used to select the nodes on which the module will be configured and to

define the networks used by the module.

For old module templates, the networks selection panel is not available.

 The SafeKit web console

39 A2 19MC 01 45

 Check the box for selecting the nodes that implement the module.

The name field color reflects the reachability of the node.

Green color means that the SafeKit server is available.

SafeKit User's Guide

46 39 A2 19MC 01

Red color means that the web console had no reply from the server within

the timeout delay.

You can either choose to:

✓ Fix the problem to be able to configure this node. It may be a bad

address, a network or host failure, a bad configuration of the web

browser or the firewall, the stop of the SafeKit web service on the

node…

✓ Uncheck the box to not configure it

✓ Keep the node checked (if you think the node is temporarily

unreachable).

 Add new node(s) when necessary (2 nodes for mirror architecture, at least 2 nodes

for farm architecture). This is a shortcut for the SafeKit cluster configuration (see

section 3.2 page 37).

 (2) Check the box for selecting the networks used by the module. Select at least one

network for synchronizing the module nodes and detecting its failures. But it is

strongly recommended to set two monitoring networks to avoid the split-brain case.

The lan name is the one used in next tab for the configuration of the module.

 Add new monitoring network when necessary and check the box for using this

network for the module. This is a shortcut for the SafeKit cluster configuration (see

section 3.2 page 37).

 (3) Click on the Apply button to save changes and go to the next step

Node list or network list modification is equivalent to modifying the SafeKit

cluster configuration. In that case, the Apply button apply the changes on

all the SafeKit cluster nodes.

For a first test of SafeKit:

 Follow this procedure to define the cluster nodes and monitoring networks for the

module

 The SafeKit web console

39 A2 19MC 01 47

3.3.2.2 Edit the configuration of the module

This form allows setting only major parameters for quick configuration of the module. If

you need to edit other userconfig.xml fields or advanced configuration, complete this

configuration then go to the Advanced Configuration tab (see section 3.7.1 page 58).

 In Configuration

wizard

 Edit the configuration

tab

 Fill in the form and

edit scripts

 You can also secure

SafeKit

communication

between cluster

nodes of the module

by managing

cryptographic keys

associated with the

module (for details,

see section 10.5 page

162).

 Once the edition is

completed, click on

the Apply button to

save changes and go

to the next step

Note that the heartbeat

networks are defined

with network name set

into the previous tab. For

module templates before

SafeKit 7.2, you must fill

the IP address for each

node.

SafeKit User's Guide

48 39 A2 19MC 01

For a first test of SafeKit:

 Follow this procedure to configure mirror or farm

 Get familiar with the module control and monitoring before inserting application specific

start and stop commands into user scripts

3.3.2.3 Apply the configuration of the module

 In Configuration wizard

 Apply the Configuration tab

 Check the module state for the cluster. When “not configured”, go to (3).

 If the module in not in the STOP (red) state, click on the button to stop the module

and then wait for STOP (red) state on all nodes before going to (3). The configuration

will be allowed only when the module is stopped on all nodes.

 Click on the Apply button to apply the configuration on all the nodes

The configuration may take some time to run commands on all the cluster nodes.

Once finished, the Check Result tab is enabled.

If you do not want to apply the configuration on all nodes, use instead the

Advanced configuration wizard available in the Advanced Configuration

tab.

When reconfiguring installed modules, the entire module configuration directory

SAFE/modules/AM is deleted (where AM is the module name) and rebuild it from

the changes made in the console: on the server side, close all editors, file

explorers, shells or cmd under SAFE/modules/AM before configuring (otherwise

there is a risk that the deployment of the new module files goes wrong).

 The SafeKit web console

39 A2 19MC 01 49

3.3.2.4 Check the configuration result

 In Configuration wizard

 Check Result tab

This tab is red if the configuration has failed on one or more nodes. It is green if the

configuration is successful on all nodes.

 Read the configuration result for each node:

✓ success means that configuration is successful on the node.

✓ connection error signals a connection failure with the node. Once the

connectivity problem is fixed, you can go back to the Apply the Configuration

tab and Apply again.

✓ failure is displayed when one of the server-side commands run during

configuration has failed. Click on Result of command to read the output of the

commands and find out the error. You may need to change parameters or

connect to the server to address the problem. Once the problem is fixed, go

back to the Apply the Configuration tab, and Apply again.

 Click on the Next button or close the window to dismiss the Configuration wizard.

3.3.2.5 Finish

 In Configuration wizard

 Finish tab

This tab ends the configuration wizard. Its main interest is for the first configuration

and start of a mirror module with replicated directory. In that case, it proposes to

select the server that has got the up-to-date replicated directories and to start it as

primary (see section 5.3 page 97).

3.3.3 Configuration with command line

The command line equivalent to the Configuration wizard is described below. Replace AM

by your module name; replace node1 and node2 by the name of your cluster nodes set

during the SafeKit cluster configuration.

1. Log as administrator/root and open a command shell window on one node

For instance, log-in node1

SafeKit User's Guide

50 39 A2 19MC 01

2. Run safekit module install –m AM
SAFE/Application_Modules/generic/mirror.safe

to install a new module named AM, from mirror.safe template

3. Edit the module configuration and scripts in SAFE/modules/AM/conf and
SAFE/modules/AM/bin

4. Run safekit module genkey –m AM or safekit module delkey –m AM

to create or delete cryptographic key for the module

5. Run safekit -H "node1,node2" -E AM

to (re)install the module AM and apply its configuration, that is get from the node

running the command (node1 in this example). It applies it on all listed nodes (node1

and node2).

For more details on commands, refer to section 9.6 page 149.

3.4 Control a module

3.4.1 Select module and node

 In Control tab

By default, modules that can be controlled are the modules installed on all the nodes

from the SafeKit cluster.

For each module:

✓ the name of installed modules and of the cluster

✓ the current state of the module instances on all cluster nodes are displayed

✓ you can run a global action on all nodes in the cluster or local action only on one

node, and view the detailed status

✓ the detailed state for the selected module/node

 The SafeKit web console

39 A2 19MC 01 51

 (1) For viewing the detailed status of the module on a given node, click on the node

All nodes set during module configuration are listed under the module. The selected node

is highlighted with a blue color.

 (2) Look at the panel, with the blue background color, to check the status on the

selected module/node

✓ select the Resources tab to view the current resources status of the module. Place

the mouse cursor over the resource name to get the internal name of the

resource. Resource’s state is controlled by the failover machine to trigger a

failover on failures (see section 13.18 page 288). Click on to display the value

of the resource over time. This history may be empty for some resources

(unassigned or cleaned).

Since SafeKit 7.5, the date displayed is the last date the

resource was assigned. Before SafeKit 7.5, this is the

first time the resource has been assigned to the current

value.

✓ select the Module Log tab to read the execution log of the module. Set or clear the

verbose log’s checkbox to display the short log (with only E messages) or the

verbose log (all messages including debug ones); See also the troubleshooting

section 7 page 109 for messages examples.

SafeKit User's Guide

52 39 A2 19MC 01

✓ select the Application Log tab to read application output messages of start and

stop scripts. These messages are saved on the server side in SAFEVAR/modules/

AM/userlog.ulog (where AM is the module name).

✓ select the Commands Log tab to display the safekit commands that have been

executed on the node (commands applied on the module and all global

commands).

✓ select the Informations tab to check the server level and the module

configuration. It is the active configuration that is the last configuration

successfully applied.

In Module Log, Application Log and Commands Log tabs,

click on the button to get the last messages or on the

 button to locally save the log.

 If you prefer, you can click on the icon to display the detailed status into a new

window

 (3) Click on the button of the module. It opens a menu for running a global

Start or Stop of the module on all the nodes in the cluster

 (4) Click on the button of one node. It opens a menu with all actions that will

be executed only on the selected node. It includes local Start or Stop of the

module and many commands to control, monitor, and support the module on the

node.

3.4.2 Control a farm module

For a first test of SafeKit on the farm module:

 (1) Click on the button of the

module.

 (2) Select the global Start or

Stop. A confirmation dialog appears

before running the command. The

command result is displayed after

completion only if an error occurs.

 (3) Wait for expected module state.

 On unexpected state, look at the

detailed status of the node.

Refer to sections listed below:

 To continue the tests, see 4 Tests page 69

 To understand and check the correct behavior of a farm module, see section 6 page

105

 The SafeKit web console

39 A2 19MC 01 53

3.4.3 Control a mirror module

For the first start of the mirror module, you cannot use the global start of the cluster.

Instead, you must:

 (1) Click on the button of

the node.

 (2) Select Expert/Force start as

prim, if the node has the up-to-

date replicated directories;

otherwise, select Expert/Force

start as second. A confirmation

dialog appears before running the

command. The command result is

displayed after completion only if

an error occurs.

 (3) Wait for expected module

state.

 On unexpected state, look at the

detailed state of the node.

Refer to sections listed below:

 For the first start-up of a mirror module, see section 5.3 page 97

 For the start-up of a mirror module with the up-to-date data, see section 5.5 page 99

 To continue the tests, see 4 Tests page 69

 To understand and check the correct behavior of a mirror module, see section 5 page

95

3.4.4 Control with command line

The command line equivalent to the module start is described below. Replace AM by your

module name; replace node1 and node2 by the name of your cluster nodes set during the

SafeKit cluster configuration.

For the global start:

1. Log as administrator/root and open a command shell window on one node

For instance, log-in node1

2. Run safekit -H "node1,node2" start -m AM

To start the module AM on all listed nodes (node1 and node2). For a mirror module,

it will start as primary or secondary according to the last module state.

For the local start:

1. Log as administrator/root and open a command shell window on one node

For instance, log-in node1

2. Run safekit start -m AM or safekit prim -m AM or safekit second -m AM

To start the module AM locally (that is on node1).

SafeKit User's Guide

54 39 A2 19MC 01

For a mirror module, use prim for starting it as primary; second for starting it as

secondary. When using start, it will start as primary or secondary according to the

last module state

All control and monitor commands are detailed in sections 9.4 page 146 and 9.5 page

148.

3.5 Snapshots of module for support

When the problem is not easily identifiable, it is recommended to take a snapshot of the

module on all nodes as described below. Snapshots allows an offline and in-depth

analysis of the module and node status as described in section 7.16 page 123. If this

analysis fails, send snapshots to support as described in section 8 page 133.

3.5.1 Snapshot of module

 In Configuration, Control, Monitoring, or Advanced Configuration tab

 Choose the module and the node

✓ (1) Click on the button of the node. It opens a menu with all actions that

can be executed on the selected node.

✓ (2) Select the Support submenu, then Snapshot command. The Web console

relies on the web browser download settings for saving the snapshot file on your

workstation.

 Repeat this operation for the other nodes in the cluster.

3.5.2 Snapshot with command line

The command line equivalent to the module snapshot is described below. Replace AM by

your module name.

1. Log as administrator/root and open a command shell window on one node

For instance, log-in node1

2. Run safekit snapshot -m AM /tmp/snapshot_xx.zip

To save the snapshot of the AM module in /tmp/snapshot_xx.zip (absolute path

mandatory) locally (that is on node1).

 Repeat all these commands on the other nodes in the cluster

For more details on support commands, refer to section 9.7 page 151.

Notes (below AM is the module name):

 The SafeKit web console

39 A2 19MC 01 55

 A dump command creates a directory dump_year_month_day_hour_mn_sec on the

server side under SAFEVAR/snapshot/modules/AM. The dump directory contains the

module logs (verbose and not verbose) and information on the system state and

SafeKit processes at the time of the dump

 A snapshot command creates a dump and gathers under

SAFEVAR/snapshot/modules/AM the last 3 dumps and last 3 configurations to archive

them in a .zip file

3.6 Monitor modules

 In Monitoring tab

By default, modules that can be monitored are all the modules installed on the nodes

from the SafeKit cluster. You can choose the display format for modules according to

your needs.

For each module, it displays:

 the current state of the module instances on all cluster nodes are displayed

 You can run a global action on all nodes in the cluster or some local actions only on

one node. Click on the button to open the menu of actions.

For more information on state changes:

SafeKit User's Guide

56 39 A2 19MC 01

 for a mirror module, see section 5.2 page 96

for a farm module, see section 6.2 page 106

3.7 Manage modules

 In Advanced Configuration tab

There is a tab for each node from the SafeKit cluster. Click on the Node tab for

switching server.

 Node tab

The node tab provides a file and module manager for the server and is divided into 5

areas.

All entries listed on the left panel open a contextual

menu on right-click on when clicking on .

 Installed modules on the selected server

 The SafeKit web console

39 A2 19MC 01 57

Lists all the modules installed on the selected server (stored into SAFE/modules on

the server side). Module icon is:

✓ (blue) when the module is installed, and its configuration is not modified

compared to the last applied configuration

✓ (purple) when the module is installed but at least one of its configuration

files has been modified compared to the last applied configuration. In that

case, you must apply the new configuration for the changes to take effect

✓ (grey) when the module is packaged into a unique file .safe

You can browse and edit the module content for advanced configuration (see section

3.7.1 page 58). On right-click, it opens a contextual menu of operations allowed on

the installed module (apply the configuration, check configuration …) or on

directory/file (common operations: copy, paste ...). Click on a directory to open or

close it.

Click on the installed module name for enabling the control panel (b) on the module.

 (b) Control panel of a module installed on the selected server

Allow control of the selected module and detailed view of the module for each node of

the cluster. It is like the one provided into the Control tab.

The Informations tab displays the summary of the active configuration

of the module that is the last configuration successfully applied. It

may be different from the one into Installed modules tree if

configuration has been modified but not applied. In that case, the icon

for the module is (purple).

 (c) Last Configs of the module installed on the selected server

SafeKit keeps the 3 last successful configuration files for each module (stored in

SAFE/modules/lastconfig on the server side), packed in a .safe file abiding by the

AM_<date>_<time> naming convention (where AM is the module name). To restore a

previous configuration, right click on the .safe and select the operation Restore

the configuration. It opens the Configuration wizard (described in section 3.3.2 page

44) with the content of the saved configuration.

 (d) Application_Modules folder on the selected server

It displays the content of the SAFE/Application_Modules directory on the server

side.

It is used as a:

✓ repository for module templates (in generic, demo and other)

✓ backup storage for modules (in backup)

✓ workspace for implementing new module templates

To copy installed module and last module configuration files into Application_Modules

folder, right-click on the source and select the operation Save to Application_Modules.

Right-click on the entry to get more actions.

 (e) Commands Log of the selected server

SafeKit User's Guide

58 39 A2 19MC 01

This area is a nice display of the safekit commands that have been executed on the

server (see section 10.9 page 175).

3.7.1 Advanced configuration of a module

For advanced configuration, go throw the following steps:

 3.7.1.1 “Edit configuration files” page 58

 3.7.1.2 “Apply the configuration” page 59

3.7.1.1 Edit configuration files

Edit configuration files to:

 set advanced configuration options into userconfig.xml (described in section 13

page 235)

 insert your application start/stop into scripts (described in section 14 page 293)

See also examples listed in section 15 page 299.

For this:

 In Advanced Configuration tab

 Node tab

 Installed modules

 The SafeKit web console

39 A2 19MC 01 59

 Navigate through the module tree (content of the directory SAFE/modules/AM on

the server side, where AM is the module name). Click to open directories

 (2) Click on a file to edit it. userconfig.xml is located under conf; user scripts are

located under bin.

The editor features an XML syntaxic mode for the userconfig.xml file. Click on the

Text/Xml radio button to toggle between raw text mode and smart XML mode. In XML

mode:

✓ clicking on the Insert button activates the insert mode. In this mode, allowed

additional tags appear in green, bold font, whereas allowed additional

attributes appear in green, italic font. Clicking on an allowed tag or attribute

inserts an instance of it at the appropriate place.

✓ clicking on the Erase button activates the erase mode. In this mode, clicking

on a tag or attributes removes it (and its children) from the edited document.

When the mouse is over such an element, the part of the document that would

be removed on mouse click is highlighted in red, stricken text.

 (3) Save the modifications to the server

 (4) Close the editor window

For a first test of SafeKit:

 apply this procedure to mirror or farm module

 open userconfig.xml file to see the module configuration

 open start and stop scripts

3.7.1.2 Apply the configuration

 In Advanced Configuration tab

 Node tab

 Installed modules

 Right-click or click on the

module entry to open the menu

 Choose Apply the configuration

that opens the Advanced

Configuration wizard

SafeKit User's Guide

60 39 A2 19MC 01

3.7.2 Advanced configuration wizard

The wizard walks you through the process of advanced configuration of a module. It

allows applying the configuration of a module that can be modified by directly editing

configuration files (see section 3.7.1.1 page 58).

 3.7.2.1 “Select nodes” page 60

Use this tab to select the nodes on which to apply the configuration. It may be useful to

apply the configuration on only one node, for testing the new configuration on that node

before applying it to other nodes in the cluster.

 3.7.2.2 “Apply the configuration on selected nodes” page 61

The configuration is applied only on the previously selected nodes.

 3.7.2.3 “Check the configuration result” page 61

This tab is enabled when the configuration has been applied in the previous step.

3.7.2.1 Select nodes

 In Advanced Configuration wizard

 Select Nodes tab

By default, all the module cluster nodes are selected.

 Check the box to apply the configuration on the node; uncheck for not applying it.

 The SafeKit web console

39 A2 19MC 01 61

 If necessary, add a new node in the same way as described in the configuration

wizard (as described in section 3.3.2.1 page 44).

 (2) Click on the Apply button when the form has been modified and go to the next

step

3.7.2.2 Apply the configuration on selected nodes

 In Advanced Configuration wizard

 Apply the configuration tab

This tab is the same as the one into the configuration wizard (described in section 3.3.2.3

page 48), but with the following major differences:

✓ Only the nodes selected in the previous step are displayed

✓ When clicking on the Apply button, there is no check that the module is stopped

on all nodes. That implies that the configuration may be applied while the module

is running. In that case, there is an attempt to make a dynamic reconfiguration.

This one is successful only if:

▪ The module is in the ALONE (green) or WAIT (red) states

▪ You have modified into the userconfig.xml file, only parameters that can

be dynamically changed (see section 13 page 235)

If you do not want to run dynamic configuration, stop the module on all

nodes before clicking on the Apply button.

3.7.2.3 Check the configuration result

 In Advanced Configuration wizard

 Check Result tab

This tab is the same as the one into the configuration wizard (described in section 3.3.2.4

page 49).

3.7.3 Uninstall a module

 In Configuration or Advanced Configuration tabs

 Click on the button of the

module to open the menu on the

module and select Uninstall

It opens a dialog for selecting the nodes on which the module will be uninstalled.

SafeKit User's Guide

62 39 A2 19MC 01

 (1) Check the box for uninstalling the

module on the node; uncheck for not

uninstalling

 (2) Click on the Confirm button to run

uninstall on the selected nodes

Note:

 before uninstalling, close all editors, file explorers, shells or cmd under

SAFE/modules/AM and SAFEVAR/modules/AM (where AM is the module name).

Otherwise, there is a risk that uninstalling the module fails

 after uninstalling, the uninstalled module is stored under the

SAFE/Application_Modules/backup directory on the server side

The command line sequence equivalent for uninstalling is (replace below AM by the

module name):

1. Log as administrator/root and open a command shell window on one node

For instance, log-in node1

2. Run safekit deconfig –m AM

To unconfigure the module AM locally

3. Run safekit module package –m AM SAFE/Application_Modules/backup/AM.safe

To save the module in SAFE/Application_Modules/backup/AM.safe

4. Run safekit module uninstall –m AM

To uninstall the module locally

Repeat all these commands on the other node.

3.7.4 Configure a module stored into Application_Modules

You may need to configure a module from a template stored into Application_Modules

such as a template (in demo folder), a backup (in backup/) or a saved module. For this:

 In Advanced Configuration tab

 Node tab

 Application_Modules folder

 Right-click on .safe, then Edit the configuration. It opens the Configuration

wizard (described in section 3.3.2 page 44). This wizard offers only quick

configuration for the module. If you need advanced configuration, Unpack the .safe

and edit the files into the extracted module tree.

 Right-click on the unpacked module entry, then Apply the configuration. It opens

the advanced configuration wizard (described in section 3.7.1 page 58).

 The SafeKit web console

39 A2 19MC 01 63

You can store an external module into the Application_Modules area for configuring it

later:

 In Advanced Configuration tab

 Node tab

 Right-click on Application_Modules folder, then Load .safe from your workstation

storage

3.8 Create a new module template (.safe) for deployments

Once your module is built and validated, you may want to reuse it on a new customer

site. For this, create first the module template on your test site, and then deploy it on the

new site.

3.8.1 Create a new module template

 In Advanced Configuration tab

 Node tab

 Installed modules

 Right-click on the module you

want to publish and choose Save to

Application_Modules

 Go to Application_Modules folder

 Right-click on the copy of the

module and Rename it with the

name of the new template (appli for

instance)

You now must modify the configuration files of the module so that it can be used as a

template:

 Browse appli folder for editing files

 Edit conf/userconfig.xml to remove values specific to your cluster. Click on the file to

open the editor. It opens the file for editing as text.

 Edit other files if they also contain parameters specific to your installation

SafeKit User's Guide

64 39 A2 19MC 01

Optionally, edit web/index.html to change the html page displayed in Enter Parameters

tab of Configuration wizard. When index.html is not present (in previous versions

modules for instance), the web console instead proposes to edit the userconfig.xml file.

 Right-click on the module, then

Pack. It generates the .safe file in

the folder.

 Save the template on your

workstation. For this, right-click

on appli.safe, then Download.

The Web console relies on the

web browser download settings

for saving the file on your

workstation

3.8.2 Deploy a new module template

After a new SafeKit installation on new servers, you can make your module template

available from Configuration tab.

 Manually copy the file appli.safe on the new SafeKit server in

SAFE/Application_Modules/demo (create it if necessary)

Or

 Connect the web console to the new

SafeKit server

 In Advanced Configuration tab

 Node tab

 Right-click on Application_Modules

folder

Choose Load .safe from your

workstation storage. Then move

appli.safe into demo

At the next web console connection to the new server (or after refreshing the web page),

appli.safe is visible in Configuration tab.

 The SafeKit web console

39 A2 19MC 01 65

The module template appli.safe can be installed and configured in the same way as other

module templates (see section 3.3 page 41).

3.9 Secure access to the web console

SafeKit offers different security policies for the web console that are implemented by

modifying the SafeKit web service configuration. These configurations also offer role

management:

Admin role

This role grants all administrative rights by allowing access to the tabs:

 Configuration, Control, Monitoring and Advanced Configuration

Control role

This role grants control and monitoring rights by allowing access to the

tabs:

 Control et Monitoring

Monitor role

This role only grants monitoring rights by allowing access to the tab:

 Monitoring

SafeKit provides different setups for the web service to enhance the security of the

SafeKit web console. The predefined setups are listed below from least secure to most

secure:

 HTTP. Same role for all users without authentication

This solution can only be implemented only in HTTP and is not compatible with user

authentication methods.

 HTTP/HTTPS with user authentication based on Apache files and optional role

management

It relies on Apache files to store username/password for authenticating users and,

optionally, to store the associated role for restricting their access. To connect to the

console, the user must enter the username and password as configured with the

Apache mechanisms.

SafeKit User's Guide

66 39 A2 19MC 01

Since SafeKit 7.5, this is the default active configuration, applied for HTTP and

initialized with a single admin user with the Admin role. The default setup can be

extended to add users or to switch to HTTPS.

 HTTP/HTTPS with user authentication based on LDAP/AD authentication. Optional role

management

It relies on LDAP/AD authentication server to authenticate users and, optionally,

restricts their access based on roles. To connect to the console, the user must enter

the username and password as configured into the LDAP/AD server. It supports HTTP

or HTTPS.

 HTTPS with client certificate authentication and role management

It relies on client certificates to authenticate users and assign their role. To connect to

the console, the user must import the appropriate client certificate into its browser. It

requires HTTPS configuration.

To implement them, refer to the section 11 page 177.

3.10 The clusters inventory of the web console

Each entry in the inventory corresponds to a SafeKit cluster and points to one of the

nodes in the cluster. This is the main connection used by the web console to get this

cluster configuration and administration.

Clusters inventory is stored into the cache of the web browser. Therefore, it

must be reassigned after the cache clean or when using another browser.

3.10.1 Define the clusters inventory of the web console

To display the inventory, click on to open the menu, then select Clusters inventory.

Apply the same procedure to hide the inventory.

It displays the clusters inventory panel at the top of the page:

 The SafeKit web console

39 A2 19MC 01 67

On the first connection with the web console, the connection server is automatically

added into the inventory with the name cluster1.

 In Clusters inventory

 Right-click or click on of the entry to open the menu and edit, delete or add an

entry to the inventory

You can edit cluster1 or add a new entry cluster2:

 Set the name of the cluster. This name is displayed into the web console for

identifying the cluster

 Check the server identity

 Click on Confirm to add/change the cluster to the inventory

The clusters inventory can also been set with a query string in the URL. For

instance:
http://172.24.199.107:9010/deploy.html?inventory=cluster1@172.24

.199.107,cluster2@172.24.199.105 open the console with the inventory

set in parameter.

http://172.24.199.107:9010/deploy.html?inventory=cluster1@172.24.199.107,cluster2@172.24.199.105
http://172.24.199.107:9010/deploy.html?inventory=cluster1@172.24.199.107,cluster2@172.24.199.105

SafeKit User's Guide

68 39 A2 19MC 01

3.10.2 Administer one cluster of the inventory with the web console

 In Clusters inventory panel

 (1) Click on the name of the cluster you want to administer

 (2) The administration panel displays the full tools for the selected cluster

3.10.3 Administer all the clusters of the inventory with the web console

 In Clusters inventory panel

 (1) Click on the Clusters inventory entry

 (2) The administration panel displays a restricted set of tools, but for all the clusters

Since SafeKit 7.5, this global administration of modules from all clusters is incompatible

with the configuration of user authentication based on file or LDAP/AD server. This means

that it is incompatible with the default configuration of the SafeKit web service. If you

need this feature, change the default configuration to the unsecure one or the secured

one based on HTTPS and client certificates. Refer to section 11 page 177.

39 A2 19MC 01 69

4. Tests

 4.1 “Installation and tests after boot” page 69

 4.2 “Tests of a mirror module” page 72

 4.3 “Tests of a farm module” page 79

 4.4 “Tests of checkers common to mirror and farm” page 86

4.1 Installation and tests after boot

4.1.1 Test package installation

Package installation:

 safekit –p returns:

Windows:

"SAFE=C:\safekit"

"SAFEVAR=C:\safekit\var"

Linux :

"SAFE=/opt/safekit"

"SAFEVAR=/var/safekit"

 SAFE – Installation directory of SafeKit: C:\safekit on Windows if

%SYSTEMDRIVE%=C:, /opt/safekit on Linux

 Editing userconfig.xml of a mirror(/farm) module and its scripts

start_prim/start_both, stop_prim/stop_both is made with the web console/

Advanced Configuration/ (see section 3.7.1 page 58) or inside SAFE/modules/AM

(where AM is the module name)

 Output messages of application scripts are in the web console/ Control

/Select the node /Application Log tab/ or in SAFEVAR/modules/AM/userlog.ulog

(where AM is the module name). Check if there are errors during start or stop of

the application. Be careful, sometimes the userlog is disabled because it is too large

with <user logging="none"> in userconfig.xml of the module

 For more information, see section 10.1 page 153

SafeKit User's Guide

70 39 A2 19MC 01

4.1.2 Test license and version

 safekit level returns

Host : <hostname>
OS : <OS version>
SafeKit : <SafeKit version>
License : Demo (No license)| Invalid Product | Invalid Host | … Expiration… | <license id> for
<hostname>…
or License : Expired license

 "Demo (No license)" means no SAFE/conf/license.txt file: the product stops

every 3 days

 "Invalid Product" means an expired license in SAFE/conf/license.txt

 "Invalid Host" means no valid hostname in SAFE/conf/license.txt

 " …Expiration…" means a temporary key

 "<license id> for <hostname>" means a permanent license

 http://www.evidian.com/safekit/requestevalkey.php to get a temporary key of one

month for any OS or any hostname

 https://support.evidian.com to get a permanent key based on the hostname and

OS

http://www.evidian.com/safekit/requestevalkey.php
https://support.evidian.com/

 Tests

39 A2 19MC 01 71

4.1.3 Test SafeKit services and processes running after boot

See also section 9.2 page 142.

Test safeadmin service:

 The safeadmin process must appear in the list of running processes

 Without this process, no safekit command works and they all return:

"Waiting for safeadmin"

"Error: safeadmin administrator daemon not running"

 On Windows, safeadmin is a service and can be started in the Services interface of

Windows

 on LINUX, safeadmin is started by service safeadmin start on Linux

Test safewebserver service:

 safekit boot webstatus displays start-up or not of safewebserver service at

boot ("on" or "off", "on" by default)

 httpd processes must be in the list of running processes if boot "on"

 without these processes, the web console is not able to connect to servers as well

<module> checkers (userconfig.xml) and distributed command line interface

 to start/stop the safewebserver service, run: safekit webserver start|stop

Test safeagent service:

 safekit boot snmpstatus displays start-up or not of safeagent service at boot

("on" or "off", "off" by default)

 safeagent process must be in the list of running processes if boot "on"

 to start/stop the safeagent service, run: safekit safeagent start|stop

Test modules:

 safekit boot status displays start-up ("on") or not ("off") of modules at boot

 safekit state displays state of all configured modules: STOP (mirror or farm),

WAIT (mirror or farm), ALONE (mirror), PRIM (mirror), SECOND (mirror), UP (farm)

 check processes of a module: see section 10.2 page 155

 safekit module listid displays name of installed modules with their ids: id of a

module must be the same on all servers

 go to SAFE/modules/AM/conf (replace AM by the module name); userconfig.xml

file gives the module type, mirror, or farm: <service mode="mirror"> or <service

mode="farm">

4.1.4 Test start of SafeKit web console

 connect a web browser to http://<server IP>:9010

 the web console home page is displayed

SafeKit User's Guide

72 39 A2 19MC 01

4.2 Tests of a mirror module

4.2.1 Test start of a mirror module on 2 servers STOP (red)

 message in the logs of both servers (web console/ Control/Select the

node/Module Log tab/ or the command safekit logview -m AM where AM is the

module name)

"Action start called by web@<IP>/SYSTEM/root"

 the module goes to the stable state PRIM (green) and SECOND (green) on both

servers with in the first log

"Remote state SECOND green"

"Local state PRIM green"

 and in the other log

"Local state SECOND green"

"Remote state PRIM green"

 application is started in the start_prim script of the module on the PRIM server

with message in the log

"Script start_prim"

4.2.2 Test stop of a mirror module on the server PRIM (green)

 message in the log of the stopped server (web console/ Control/Select the

node/Module Log tab/ or the command safekit logview -m AM where AM is the

module name)

"Action stop called by web@<IP>/SYSTEM/root"

 the stopped server runs the stop_prim script of the module which stops the

application on the server with message in the log:

"Script stop_prim"

 the module becomes STOP (red) with messages in the log:

"End of stop"

"Local state STOP red"

 the module becomes ALONE (green) on the other server with the message in the

log:

"Reason of failover: remote stop"

 the application is started with the start_prim script on the ALONE server with the

message in the log:

"Script start_prim"

 Tests

39 A2 19MC 01 73

4.2.3 Test start of a mirror module on the server STOP (red)

 message in the log of the started module (web console/ Control/Select the

node/Module Log tab/ or the command safekit logview -m AM where AM is the

module name)

"Action start called by web@<IP>/SYSTEM/root"

 the red STOP module becomes SECOND (green)

 the module ALONE (green) on the other server becomes PRIM (green) and

continues to execute the application

4.2.4 Test restart of a mirror module on the server PRIM (green)

 message in the log of the server where the restart command is passed (web

console/ Control/Select the node/Module Log tab/ or the command safekit

logview -m AM where AM is the module name)

"Action restart called by web@<IP>/SYSTEM/root"

 the PRIM module becomes PRIM (magenta) and then becomes PRIM (green)

 the scripts of the module stop_prim/start_prim are executed on the PRIM module

and restarts locally the application on the server with messages in the log:

"Script stop_prim"

"Script start_prim"

 the other module on the other server stays SECOND (green)

4.2.5 Test swap of a mirror module from one server to the other

 message in the log of the server where the swap command is passed (web console/

 Control/Select the node/Module Log tab/ or the command safekit logview -m

AM where AM is the module name)

"Action swap called by web@<IP>/SYSTEM/root"

"Transition SWAP from SYSTEM"

"Begin of Swap"

 And in the log of the other server, only:

"Begin of Swap"

 reversing the roles of PRIM and SECOND between both servers

 the stop_prim script is first executed on the former PRIM within its log:

"Script stop_prim"

 then the start_prim script is executed on the new PRIM server with in its log:

"Script start_prim"

 at the end of swap, module PRIM (green) and module SECOND (green) are

reversed on both servers and the application is on the new PRIM server

SafeKit User's Guide

74 39 A2 19MC 01

4.2.6 Test virtual IP address of a mirror module

Mirror module in the state PRIM (green)

on server node1 and SECOND (green) on

server node2.

userconfig.xml:

<vip>

 <interface_list>

 <interface arpreroute="on">

 <real_interface>

 <virtual_addr addr="ipvirt"

 where="one_side_alias"/>

 </real_interface>

 </interface>

 </interface_list>

</vip>

1. On an external workstation (or server)

in the same LAN, ping both physical IP

addresses + virtual IP address:

ping node1_ip_address
ping node2_ip_address
ping ipvirt
arp –a

2. safekit swap –v AM on the primary

server (where AM is the module name)

3. On the external workstation (or

server),

ping node1_ip_address
ping node2_ip_address
ping ipvirt
arp –a

Note: redo the ping to virtip before

looking at the ARP table because the

entry may be marked obsolete and

refreshes only after ping

1. On server node1, ipconfig or

ifconfig (or ip addr show) returns

ipvirt as an alias on the network

interface.

On the external workstation (or

server), the 3 pings respond

On the external workstation (or

server) in the same LAN, virtip is

mapped to the same MAC address as

node1_ip_address

arp –a
node1_ip_address 00-0c-29-0a-5c-fc

node2_ip_address 00-0c-29-26-44-93
ipvirt 00-0c-29-0a-5c-fc

2. After the swap, SECOND (green) on

node1 server and PRIM (green) on

node2 server

In the log of new primary, message:

"Virtual IP <ipvirt of mirror> set"

3. On node2, ipconfig or ifconfig (or

ip addr show) returns ipvirt as an

alias on the network interface

On the external workstation (or

server), the 3 pings respond

On the external workstation (or

server), virtip is mapped to the same

MAC address as node2_ip_address

arp –a
node1_ip_address 00-0c-29-0a-5c-fc
node2_ip_address 00-0c-29-26-44-93
ipvirt 00-0c-29-26-44-93

 Tests

39 A2 19MC 01 75

4.2.7 Test file replication of a mirror module

Mirror module in the state PRIM (green)

on node1 server and SECOND (green) on

node2 server.

userconfig.xml:

<rfs>

<replicated dir="C:\replicated"

mode="read_only" />

 (or "/replicated"

on Linux)

</rfs>

1. On the server PRIM (green), go to

/replicated and create a file file1.txt

2. On the server SECOND (green), go to

/replicated and try to delete file1.txt

3. Stop the server PRIM (green) and

wait for STOP (red). Then go to the

other server which is ALONE (green)

and create a new file file2.txt

4. Restart the server STOP (red) and

wait for SECOND (green).

1. file1.txt has been replicated on

SECOND (green) under /replicated

2. Failure because the /replicated

directory is read-only on the server

SECOND (green)

3. file2.txt is not replicated in /replicated

of the server STOP (red)

4. file2.txt is reintegrated on the

restarted server. During the phase of

reintegration, the server is SECOND

(magenta)

In the log of reintegrated server,

message

"Updating directory tree from /replicated"

And at the end of /replicated

reintegration, if at least 1 file with

modified data has been reintegrated

from primary server to secondary

server, message

"Copied <reintegration statistics>"

"Reintegration ended (synchronize)"

This message gives statistics for the

reintegrated directory: reintegrated

size, number of files, time, and

throughput on the network in KB/sec.

Note: reintegrate a file larger than 100

MB to have reliable statistics

At the end of reintegration, the server

is SECOND (green)

SafeKit User's Guide

76 39 A2 19MC 01

4.2.8 Test mirror module shutdown on the server PRIM (green)

 on Windows, check that the special procedure to stop modules at shutdown has

been applied.

 make a shutdown of PRIM (green) server

 check in the log of server SECOND (green), message

"Reason of failover: remote stop"

 the server SECOND (green) becomes ALONE (green); application in the

start_prim script of the module is restarted on the ALONE server with the message

in the log

"Script start_prim"

 on timeout in the SafeKit console, the old server PRIM (green) becomes grey

 after reboot of the stopped server, check that the OS shutdown has really called a

shutdown of the module

"Action shutdown called by SYSTEM"

 Check that the application stop_prim script has been executed with the message

"Script stop_prim"

 And check that the module has been completely stopped before shutting down the

server with the last message

"End of stop"

 after reboot of stopped server, if the module is started automatically at boot

(safekit boot status), message in the log

"Action start called at boot time"

 after a start of the module on the stopped server, the module becomes SECOND

(green) on this server and PRIM (green) on the other server

 Tests

39 A2 19MC 01 77

4.2.9 Test mirror module power-off on the server PRIM (green)

userconfig.xml:

<heart>

 <heartbeat name="default" />

 <heartbeat ident="flow" />

</heart>

Note: If you want to make a test with

double simultaneous electrical fault on

both servers, check that <rfs

async="none"> is set in userconfig.xml.

For more information, see section 1.3.6

page 18

 in the log of the server SECOND

(green), message for all heartbeats

configured in userconfig.xml

"Resource heartbeat.default set to down by
heart"
"Resource heartbeat.flow set to down by heart"
"Remote state UNKNOWN grey"
"Reason of failover: no heartbeat"

 messages appear within 30 seconds

after the power-off (if no specified

timeout configured for <heart> in

userconfig.xml)

 the server SECOND (green) becomes

 ALONE (green); the application in

the start_prim script of the module is

restarted on the ALONE server with the

message in its log

"Script start_prim"

 on timeout in the SafeKit console, the

former server PRIM (green)

becomes grey

 after reboot of stopped server, if the

module is started automatically at

boot (safekit boot status),

message in the log

"Action start called at boot time"

 after reboot, message in the log:

"Previous halt unexpected"

 after restart of the module on the

stopped server, the module becomes

 SECOND (green) on this server and

 PRIM (green) on the other server

SafeKit User's Guide

78 39 A2 19MC 01

4.2.10 Test split brain with a mirror module

Split brain occurs in situation of network

isolation between two SafeKit servers.

Each server becomes primary ALONE and

runs the application. At return of split

brain, a sacrifice must be made by

shutting down the application on one of

the two servers.

Mirror module in the state PRIM (green)

and SECOND (green)

userconfig.xml:

<heart>

 <heartbeat name=”default” />

 <heartbeat name=”repli” ident="flow"

/>

</heart>

+

on Windows to manage the IP conflict on

the virtual IP address virtip

<vip>

 <interface_list>

 <interface check="on"

arpreroute="on">

 <real_interface>

 <virtual_addr addr="192.168.1.10"

 where="one_side_alias"/>

 </real_interface>

 </interface>

 </interface_list>

</vip>

To obtain the split brain, check that there

are no checkers in userconfig.xml that

can detect the network isolation: no

<interface check="on">, no <ping>

checker

1. disconnect all heartbeat networks at

the same time (network default and

repli)

2. reconnect networks

 after network isolation of both servers,

all heartbeats are lost. In the logs of

both servers,

"Resource heartbeat.default set to down by
heart"
"Resource heartbeat.flow set to down by heart"
"Remote state UNKNOWN grey"
"Local state ALONE green"

 split brain case: both servers are

ALONE (green) and run the application

started in start_prim

 when reconnecting heartbeat

networks, sacrifice of one ALONE

server: the former SECOND server

 log of the former PRIM not sacrificed:

"Remote state ALONE green"

"Split brain recovery: staying alone"

 log of the former SECOND sacrificed:

"Remote state ALONE green"

"Split brain recovery: exiting alone"
"Script stop_prim"

The server performs a stopstart: stop

of the application with stop_prim then

reintegration of replicated files from

the other server

 come back to the stable state PRIM

(green) and SECOND (green) on both

servers as it was before split brain

Note: situation of split brain in a mirror

module with file replication is not good.

Indeed, the sacrifice of the former

secondary server causes file reintegration

of this server from the primary one and

the loss of data stored on the secondary

during the split-brain situation.

For this reason, 2 heartbeats on two

physically separate networks are

recommended. Typically, a cable between

the two servers will allow (1) to avoid split

brain with an additional heartbeat network

and (2) set the replication flow on a

separate network

4.2.11 Continue your mirror module tests with checkers

Go to section 4.4 page 86 for tests of checkers.

 Tests

39 A2 19MC 01 79

4.3 Tests of a farm module

4.3.1 Test start of a farm module on all servers STOP (red)

 message in the logs of all servers (web console / logview command)

"Action start called by web@<IP>/SYSTEM/root"

 the module goes to UP (green) on all servers

 the application is started in the start_both script of the module on all servers with

the message in the log

"Script start_both"

4.3.2 Test stop of a farm module on one server UP (green)

 message in the log of the stopped server (web console / logview command)

"Action stop called by web@<IP>/SYSTEM/root"

 the stopped module runs the stop_both script which stops the application on the

server and with message in the log

"Script stop_both"

 the stopped module becomes STOP (red) with messages in the log:

"End of stop"

"Local state STOP red"

 the other servers stay UP (green) and continue to run the application

 restart the module STOP (red) with the start command

4.3.3 Test restart of a farm module on one server UP (green)

 message in the log of the module where the restart command is passed (web

console / logview command)

"Action restart called by web@<IP>/SYSTEM/root"

 the restarted module becomes UP (magenta) then becomes UP (green)

 the module scripts stop_both/start_both are executed on the server and restart

locally the application with messages in the log

"Script stop_both"

"Script start_both"

SafeKit User's Guide

80 39 A2 19MC 01

4.3.4 Test virtual IP address of a farm module

4.3.4.1 Configuration with vmac_invisible

Farm module in the UP (green)

state on 2 servers node1 and

node2

userconfig.xml with load

balancing on the safewebserver

service (TCP port 9010):

<farm>

<lan name=”default” />

</farm>

<vip>

 <interface_list>

 <interface>

 <virtual_interface

type="vmac_invisible" >

 <virtual_addr

addr="virtip" where="alias"/>

 </virtual_interface>

 </interface>

 </interface_list>

<loadbalancing_list>

<group name="FarmProto">

 <rule port="9010"

proto="tcp" filter="on_port"/>

</group>

</loadbalancing_list>

</vip>

On a remote workstation (or

server) in the same LAN, ping of

the 2 physical IP addresses +

virtual IP + arp –a

 In the log of all servers:

"Vitual IP <virtip of farm> set"

 On the 2 servers, ipconfig or ifconfig (or ip

addr show) returns virtip as an alias on the

network interface

 On a remote workstation (or server), the pings

respond. And virtip is mapped with the invisible

virtual MAC address:

ping node1_ip_address; ping node2_ip_address ; ping
virtip; arp –a
node1_ip_address 00-0c-29-0a-5c-fc
node2_ip_address 00-0c-29-26-44-93
virtip 5a-fe-c0-a8-38-14

 Note: by default, the virtual MAC address is a

unicast Ethernet address built with 5A:FE

(SAFE) and the virtual IP address in

hexadecimal

 Tests

39 A2 19MC 01 81

4.3.4.2 Configuration with vmac_directed

Farm module in the UP (green)

state on 2 servers node1 and

node2

userconfig.xml with load

balancing on the safewebserver

service (TCP port 9010):

<farm>

<lan name=”default” />

</farm>

<vip>

 <interface_list>

 <interface arpreroute=”on”>

 <virtual_interface

type="vmac_directed" >

 <virtual_addr

addr="virtip" where="alias"/>

 </virtual_interface>

 </interface>

 </interface_list>

<loadbalancing_list>

<group name="FarmProto">

 <rule port="9010"

proto="tcp" filter="on_port"/>

</group>

</loadbalancing_list>

</vip>

On a remote workstation (or

server) in the same LAN, ping of

the 2 physical IP addresses +

virtual IP + arp –a

 In the log of all servers:

"Vitual IP <virtip of farm> set"

 On the 2 servers, ipconfig or ifconfig (or ip

addr show) returns virtip as an alias on the

network interface

 On a remote workstation (or server), the pings

respond, and ip1.20 is mapped with the MAC

address of one of the 2 servers:

ping node1_ip_address; ping node2_ip_address; ping
virtip; arp –a
node1_ip_address 00-0c-29-0a-5c-fc
node2_ip_address 00-0c-29-26-44-93
virtip 00-0c-29-26-44-93

SafeKit User's Guide

82 39 A2 19MC 01

4.3.5 Test TCP load balancing on a virtual IP address

Farm module in the state UP

(green) on the 2 servers node1,

node2.

Same load balancing

configuration in userconfig.xml

as the previous test.

On a remote workstation:

1. Connect a browser to

http://virtip:9010/safekit/mos

aic.html. Click on the virtip

link. node1, node2 respond

2. safekit stop –m AM on

node2 (where AM is the

module name). Reload the

URL: node1 responds

Special command to check the

load balancing bitmap for port

9010 on each node UP

(green):

 safekit –r vip_if_ctrl –l

An entry in the bitmap of 256 bits

must be 1 on a single server.

Furthermore, the 256 bits are

fairly distributed in the bitmaps of

all servers UP (green) (if no

definition of power inside

userconfig.xml)

 UP (green) on the 2 servers: load balancing

of TCP sessions between node1, node2 when

loading the URL

In the resources of the module, for node1 and

node2: FarmProto 50%

Example of logs with node1 and node2:

In the logs of node1 and node2:

"farm membership: node1 node2 (group FarmProto)"
"farm load: 128/256 (group FarmProto)"

128/256: 128 bits on 256 are managed by

each server

safekit –r vip_if_ctrl –l on node1 and

node2:

Bitmap 1:00000000:00000000:00000000:00000000:

ffffffff:ffffffff:ffffffff:ffffffff

Bitmap 2:ffffffff:ffffffff:ffffffff:ffffffff:

00000000:00000000:00000000:0000000

Bits are fairly distributed between both servers

 STOP (red) on node2: TCP sessions served

only by node1 when loading the URL

In the log of node1:

"farm membership: node1 (group FarmProto)"
"farm load: 256/256 (group FarmProto)"

256/256: all the bits are managed by node1

safekit –r vip_if_ctrl –l on node1:

Bitmap 1:ffffffff:ffffffff:ffffffff:ffffffff:

ffffffff:ffffffff:ffffffff:ffffffff

All the bits are managed by node 1

 Tests

39 A2 19MC 01 83

4.3.6 Test split brain with a farm module

Split brain occurs in case of

network isolation between SafeKit

servers.

Farm module is UP (green)

UP (green) on the servers node1

and node2.

Same configuration of load

balancing in userconfig.xml as

the previous test. To get the split

brain, check in userconfig.xml

that there are no checkers that

can detect isolation: no

<interface check="on"> or

<ping> checker

On the external workstation:

1. Connect a browser to

http://virtip:9010/safekit/mos

aic.html. Click on the virtip

link. node1 and node2

respond

2. disconnect the network

between node1 and node2.

Depending on the location

where the external console is,

node 1 responds or node 2

or

3. reconnect the network and

connect to URL

Same special command as in the

previous test to check the load

balancing bitmap for port 9010

on each node UP (green)

 before split brain, state UP (green) UP

(green):

In the resources of the module, for node1 and

node2: FarmProto 50%.

In the logs of node1 and node2:

"farm membership: node1 node2 (group FarmProto)"
"farm load: 128/256 (group FarmProto)"

128/256: 128 bits on 256 are managed by

each server

safekit –r vip_if_ctrl –l on node1 and

node2:

Bitmap 1:00000000:00000000:00000000:00000000:

ffffffff:ffffffff:ffffffff:ffffffff

Bitmap 2:ffffffff:ffffffff:ffffffff:ffffffff:

00000000:00000000:00000000:0000000

Bits are fairly distributed between both servers

 after isolation of servers, split brain:

In the resources of the module, for node1 and

node2: FarmProto 100%.

In the log of node1:

"farm membership: node1 (group FarmProto)"
"farm load: 256/256 (group FarmProto)"

256/256: all the bits are managed by node 1

safekit –r vip_if_ctrl –l on node1:

Bitmap 1:ffffffff:ffffffff:ffffffff:ffffffff:

ffffffff:ffffffff:ffffffff:ffffffff

in the log of node 2:

"farm membership: node2 (group FarmProto)"
"farm load: 256/256 (group FarmProto)"

256/256: all the bits are managed by node 2

Bitmap 2:ffffffff:ffffffff:ffffffff:ffffffff:

 ffffffff:ffffffff:ffffffff:ffffffff

 after split brain when network is reconnected

between ip1.1 and ip1.2, the same messages

can be found in the log and the same bitmaps

as those before split brain

Note: the default behavior of farm in situation of

split brain is good. The recommendation is to put

in userconfig.xml a monitoring network <lan>

</lan> where the virtual IP address is.

Note: In vmac_directed mode, the log messages

and vip_if_ctrl output are different.

SafeKit User's Guide

84 39 A2 19MC 01

4.3.7 Test compatibility of the network with invisible MAC address
(vmac_invisible)

4.3.7.1 Network prerequisite

A unicast MAC Ethernet address 5a-

fe-xx-xx-xx-xx is associated with

the virtual IP address of a farm

module. It is never presented by

SafeKit servers as source Ethernet

address (invisible MAC). Switches

cannot locate this address. When

they follow a packet to the

destination MAC address 5a-fe-xx-

xx-xx-xx, they must broadcast the

packet on all ports of the LAN or

VLAN where the virtual IP address

is (flooding). All servers in the farm

therefore receive packets destined

to the virtual MAC address 5a-fe-

xx-xx-xx-xx.

Note that this prerequisite does not

exist for a mirror module: see

section 4.2.6 page 74

4.3.7.2 Server prerequisite

The packets are captured by

Ethernet cards set in promiscuous

mode by SafeKit. And the packets

are filtered by the module kernel

<vip> according the load balancing

bitmap. To make a test, you need

network monitor tool.

Network monitoring on Windows

2003 (CD2):

 install "Network Monitor Tools"

in "Management and Monitoring

Tools" (capture only packets in

source or destination of the

server)

 Start / Network Monitor then

Capture Filter / Address Pairs /

virtip then Capture / Start then

"Stop and View" at the end of

capture

Network monitoring on Linux:

 tcpdump host virtip: capture all

network packets

 all servers are UP (green)

 the network monitoring is started on each

server with a filter on virtip

 an external workstation sends a single ping

to the virtual IP address with ping –n (or –c)

1 virtip

 result: 1 packet "ICMP: Echo: From ipconsole

To virtip" sent and received by all servers

 result: there must be as many packets

"ICMP: Echo Reply: To ipconsole From virtip"

as there are servers UP (green)

 if it is not the case, check if options restrict

the "port flooding" in switches and prevent

the broadcast of "ICMP: Echo" to all servers

 be careful: the "port flooding" restriction in

switches can occur after a certain number of

flooding (time, number of KB flooded): the

ping test must be repeated during several

hours by creating flooding to the virtual IP

address

 Note: to avoid network monitoring tools, an

external Linux console can be used. The

Linux ping prints duplicate packets coming

from the 2 servers UP (green):

ping virtip

64 bytes from ip1.20 icmp_seq=1
64 bytes from ip1.20 icmp_seq=1 (DUP!)
64 bytes from ip1.20 icmp_seq=2
64 bytes from ip1.20 icmp_seq=2 (DUP!)...

This test may be carried out for several hours

by storing the output of the ping in a file and

then ensuring that there was (DUP!) all the

time: date > /tmp/ping.txt ; ping
virtip >> /tmp/ping.txt

 Tests

39 A2 19MC 01 85

4.3.8 Test farm module shutdown of a server UP (green)

 on Windows, check that the special procedure to stop modules at shutdown has

been performed

 make a shutdown of a UP (green) server

 the other servers stay UP (green) and continue to run the application

 on timeout in the SafeKit console, the former server UP (green) becomes grey

 after reboot, check that shutdown of the OS has called a shutdown of the module

"Action shutdown called by SYSTEM"

 Check that the stop_both script which stops the application has been executed

with the message

"Script stop_both"

 And check that the module has been completely stopped before stopping the server

with the last message

"End of stop"

 after reboot of the stopped server, if the module is started automatically at boot

(safekit boot status), message in the log

"Action start called at boot time"

 after start-up of the module on the stopped server, the module becomes UP

(green) and it executes the start_both script which restarts the application on this

server with the message in the log

"Script start_both"

4.3.9 Test farm module power-off of a server UP (green)

 the other servers stay UP (green) and continue to run the application

 on timeout in the SafeKit console, the former server UP (green) becomes grey

 after reboot of the stopped server, if the module is started automatically at boot

(safekit boot status), message in the log

"Action start called at boot time"

 after reboot, message in the log

"Previous halt unexpected"

 after start-up of the module on the stopped server, the module becomes UP

(green) and it executes the start_both script which restarts the application on this

server with the message in the log

"Script start_both"

4.3.10 Continue your farm module tests with checkers

Go to section 4.4 page 86 for tests of checkers.

SafeKit User's Guide

86 39 A2 19MC 01

4.4 Tests of checkers common to mirror and farm

4.4.1 Test <errd>: checker of process with action restart or stopstart

In userconfig.xml:

<errd>

<proc name="appli.exe" atleast="1"

action="restart "

class="prim "/>

</errd>

 name="appli.exe" atleast="1": at

least one process "appli.exe" must run

 class=”prim” (mirror module case):

checker started on the server in state

 (green) (i.e. PRIM or ALONE), after

start_prim script (stopped before

stop_prim)

 class="both" (farm module case):

checker started on all servers

(green) UP after start_both script

(stopped before stop_both)

 action="restart": if appli.exe is

not running, action restart which

applies only scripts stop_xx; start_xx

 action="stopstart": if appli.exe is

not running, action stopstart which

stops completely the module and then

restarts it

Kill of process appli.exe on the server in

 (green) state. That is in states PRIM or

ALONE for a mirror module; UP for a farm

module:

 messages in the log:

"event atleast on proc appli.exe"
"Action restart|stopstart called by errd"

 the module becomes (magenta),

respectively in state PRIM, ALONE or UP

 in the restart case, the module

becomes (green), respectively in

state PRIM, ALONE or UP

 in the stopstart case, the module

becomes (green), respectively in

state SECOND, ALONE or UP

message in the log:

"Action start called automatically"

Note: a stopstart on (green) PRIM

causes a failover

Repeat the test on the same server if it

still runs the application (i.e. (green) in

state ALONE or UP):

 with the default values of maxloop="3"

and loop_interval="24"

(userconfig.xml <service>)

 after 4 kills on the same server, the

module becomes STOP (red)

 in the log, message before stopping:

"Stopping loop"

 Tests

39 A2 19MC 01 87

4.4.2 Test <tcp> checker of the local application with action restart or
stopstart

In userconfig.xml:

<tcp ident="id" when="prim ">

 <to addr="virtip" port="idport"

interval="10"

timeout="5" />

</tcp>

<failover>

<![CDATA[

tcpid_failure: if (tcp.id == down)

then stopstart();

]]>

</failover>

 the checker checks that the TCP

application started on port idport

responds to connection requests

 addr="virtip" port="idport" : TCP

connections tested on IP address virtip

and on TCP port idport

 interval="10" timeout="5" by

default: test made every 10 seconds

and with a timeout of 5 seconds

 when="prim" (mirror module case):

checker is started on the server in

state (green) (i.e. PRIM or ALONE),

after the start_prim script (stopped

before stop_prim)

 when="both" (farm module case):

checker is started on all servers in

state (green) UP, after the

start_both script (stopped before

stop_both)

 action restart(): Default failover

rule; if the local TCP connection fails,

action restart which runs only scripts

stop_xx ; start_xx

 action stopstart(): if the local TCP

connection fails, action stopstart

which stops completely the module

and then restarts it

Stop the application listening on port

idport on the server in state (green).

That is in states PRIM or ALONE for a

mirror module, UP for a farm module:

 messages in the log:

"Resource tcp.id set to down by tcpcheck"
"Action restart|stopstart from failover rule
tcpid_failure "

 the module becomes (magenta),

respectively in state PRIM, ALONE or UP

 in the restart case, the module

becomes (green), respectively in

state PRIM, ALONE or UP

 in the stopstart case, the module

becomes (green), respectively in

state SECOND, ALONE or UP.

message in the log:

"Action start called automatically"

Note: a stopstart on (green) PRIM

causes a failover.

Repeat the test on the same server if it

still runs the application (i.e. (green) in

state ALONE or UP):

 with the default values of maxloop="3"
loop_interval="24"

(userconfig.xml <service>)

 after 4 stops of the application on the

same server, the module becomes

STOP (red)

 in the log, message before stopping:

"Stopping loop"

SafeKit User's Guide

88 39 A2 19MC 01

4.4.3 Test <tcp> checker of an external service with action wait

In userconfig.xml:

<tcp ident="id" when="pre">

 <to addr="ip.external" port="idport"

interval="10"

timeout="5" />

</tcp>

<failover>

<![CDATA[

tcpid_failure: if (tcp.id== down) then

wait();

]]>

</failover>

 the checker checks that the external

TCP service (ip.external, idport)

responds to connection requests

 interval="10" timeout="5" by

default: test made every 10 seconds

and with a timeout of 5 seconds

 when="pre": started at the beginning

of module start-up after prestart script

(and stopped before poststop)

 if the TCP connection fails, the checker

sets the resource tcp.id to down. The

failover rule on the TCP checker runs

the stopwait action which stops the

application and puts the module in the

state WAIT, waiting for tcp.id reset to

up by the checker

Stop the external TCP service

(ip.external, idport), on the server in

 (green) state. That is in state PRIM,

ALONE or SECOND for a mirror module, UP

for a farm module:

 messages in the log:

"Resource tcp.id set to down by tcpcheck"
"Action wait from failover rule tcpid_failure"

Note: a wait on (green) PRIM

causes a failover

 in all cases, the server becomes

WAIT (red) on the server

Restart the external TCP process and

services:

 messages in the log

"Resource tcp.id set to up by tcpcheck"
"Transition WAKEUP from failover rule
Implicit_WAKEUP"

 the module restarts on the server and

becomes (green), respectively in

state SECOND, ALONE, SECOND or UP

Repeat the test on the same server:

 with the default values of maxloop="3"
loop_interval="24"

(userconfig.xml <service>)

 after 4 restarts of on the same server,

the module becomes STOP (red)

 in the log, message before stopping:

"Stopping loop"

Note: This test allows testing of

connectivity to an external service. But if

the external service is down or is

unreachable on all servers, all servers are

in state WAIT (red) and the application

is unavailable

 Tests

39 A2 19MC 01 89

4.4.4 Test <interface check="on"> on a local network interface and
with action wait

In userconfig.xml:

<vip>

 <interface_list>

 <interface check="on">

 <!--

 definition of a virtual IP

address

 on the network default

 -->

 </interface>

 </interface_list>

</vip>

Default failover rule = wait

 A checker checks that the Ethernet

cable is connected in the interface of

the ip.0 network where the virtual IP

address is set

 If the cable is disconnected, the

checker updates the resource

intf.ip.0 to down. The failover rule

on interface checkers runs the

stopwait action which stops the

application and puts the module in the

WAIT state waiting for intf.ip.0 reset to

up by the checker.

Note: do not use check="on" on bonding

or teaming interface because these

interfaces bring their own failover

mechanisms from interface to interface

Unplug the Ethernet cable from ip.0

network on the server in (green) state.

That is in state PRIM, ALONE or SECOND for

a mirror module, UP for a farm module:

 messages in the log:

"Resource intf.ip.default set to down by
intfcheck"

"Action wait from failover rule interface_failure"

"Transition WAIT_TR from failover rule

interface_failure"

Note: a wait on (green) PRIM

causes a failover

 in all cases, the module becomes

WAIT (red) on the server

Plug the cable again:

 messages in the log

"Resource intf.ip.0 set to up by intfcheck"
"Transition WAKEUP from failover rule
Implicit_WAKEUP"

 the module restarts on the server and

becomes (green), respectively in

state SECOND, ALONE, SECOND or UP

Repeat the test on the same server:

 with the default values of maxloop="3"
loop_interval="24"

(userconfig.xml <service>)

 after 4 restarts on the same server,

the module becomes STOP (red)

 in the log, message before stopping:

"Stopping loop"

Note: disabling the interface (instead

of unplugging the ethernet cable)

leads to STOP (red). The reason is

that the module cannot start (or

restart) without local IP address.

SafeKit User's Guide

90 39 A2 19MC 01

4.4.5 Test <ping> checker with action wait

In userconfig.xml:

<ping ident="id" when="pre">

 <to addr="ip.device" interval="10"

timeout="5"/>

</ping>

Default failover rule = wait

 the checker checks that the external

device (ex.: a router) with address

ip.device responds to ping

 interval="10" timeout="5" by

default: test made every 10 seconds

and with a timeout of 5 seconds

 when="pre": started at the beginning

of module start-up after prestart script

(and stopped before poststop)

 if the ping does not respond, the

checker sets the resource ping.id to

down. The failover rule on ping checker

runs the stopwait action which stops

the application and puts the module in

the WAIT state, waiting for ping.id

reset to up by the checker.

Break the link between the pinged

external device and the server the server

in (green) state. That is in state PRIM,

ALONE or SECOND for a mirror module, UP

for a farm module:

 messages in the log:

"Resource ping.id set to down by pingcheck"
"Action wait from failover rule ping_failure"

Note: a wait on (green) PRIM

causes a failover

 in all cases, the module becomes

WAIT (red) on the server

Restore the network connection:

 messages in the log

"Resource ping.id set to up by pingcheck"
"Transition WAKEUP from failover rule
Implicit_WAKEUP"

 the module restarts on the server and

becomes (green), respectively in

state SECOND, ALONE, SECOND or UP

Repeat the test on the same server:

 with the default values of maxloop="3"
loop_interval="24"

(userconfig.xml <service>)

 after 4 restarts on the same server,

the module becomes STOP (red)

 in the log, message before stopping:

"Stopping loop"

Note: this test allows testing of

connectivity from the server to the

network. But if the external device is

down and if the ping fails on all servers,

all servers are in WAIT (red) and the

application is unavailable.

 Tests

39 A2 19MC 01 91

4.4.6 Test <module> checker with action wait

In userconfig.xml of module X, test of

another module othermodule:

userconfig.xml of module X:

<module name="othermodule">

 <to addr="ip" interval="10"

timeout="5"/>

</module>

 the checker checks the module

othermodule on its virtual IP address

ip

 interval="10" timeout="5" by

default: test made every 10 seconds

and with a timeout of 5 seconds

If the module othermodule is not started,

the module X stay in the WAIT state

waiting for its restart

The module X makes a stopstart when the

module othermodule is restarted

Note: if the module X is a mirror module

using file replication and because of rule

notuptodate_server, you may

experience a wrong behavior with module

X blocked in a WAIT state, if the stopstart

action happens when X in the transition

SECOND to ALONE

Stop the module othermodule. And start

the module X on all servers:

 messages in the log of module X

"Resource module.othermodule_ip set to down
by modulecheck
"Action wait from failover rule module_failure"

 the module X becomes WAIT (red)

on all servers

Start the module othermodule:

 messages in the log of module X

"Resource module.othermodule_ip set to up by
modulecheck"
"Transition WAKEUP from failover rule
Implicit_WAKEUP"

 the module X starts on all servers in

 (green)

Make safekit restart –m othermodule

 messages in the log of module X:

"Action stopstart called by modulecheck"

 the module X stops and then restarts

Repeat the test on the same server:

 with the default values of maxloop="3"
loop_interval="24"

(userconfig.xml <service>)

 after 4 restarts on the same server,

the module becomes STOP (red)

 in the log, message before stopping:

"Stopping loop"

SafeKit User's Guide

92 39 A2 19MC 01

4.4.7 Test <custom> checker with action wait

In userconfig.xml:

<custom ident="id" when="pre"

exec="customscript" >

</custom>

 script
SAFE/module/<name>/bin/customscript

is a custom checker: a loop with a test

on a resource

 when="pre": custom checker started on

all servers PRIM, ALONE, SECOND or UP

(green) after prestart script (stopped

before poststop)

Manage the resource custom.id to perform

the action:

 in the script customscript:

on error: SAFE/safekit set -r custom.id–v down

–i customscript

on success: SAFE/safekit set -r custom.id–v up

–i customscript

 in userconfig.xml:

<failover>
<![CDATA[
customid_failure: if (custom.id == down) then
wait();

]]>
</failover>

 if the custom checker sets the resource

to down, action wait which stops

completely the module and restarts it in

the state WAIT (red), waiting for the

resource reset to up by the custom

checker

Cause the error tested by custom

checker on the server in state

(green). That is in state PRIM, ALONE or

SECOND for a mirror module; UP for a

farm module:

 messages in the log:

"Resource custom.id set to down by
customscript"
"Action wait from failover rule
customid_failure"
"Transition WAIT_TR from failover rule

customid_failure"

Note: a wait on (green) PRIM

causes a failover

 in all cases, the module becomes

WAIT (red) on the server

Fix error tested by custom checker:

 messages in the log

"Resource custom.id set to up by
customscript"
"Transition WAKEUP from failover rule
Implicit_WAKEUP"

 the module restarts on the server

and becomes (green),

respectively in state SECOND, ALONE,

SECOND or UP

Repeat the test on the same server:

 with the default values of
maxloop="3" loop_interval="24"

(userconfig.xml <service>)

 after 4 restarts on the same server,

the module becomes STOP (red)

 in the log, message before stopping:

"Stopping loop"

 Tests

39 A2 19MC 01 93

4.4.8 Test <custom> checker with action restart or stopstart

4.4.8.1 Action through a failover rule

In userconfig.xml:

<custom ident="id" when="prim "

exec="customscript" >

</custom>

 script customscript
SAFE/module/<name>/bin/customsc

ript is a custom checker: loop with

a test on the application integrated in

the scripts

 when="prim" (mirror module case):

custom checker started on the server

 PRIM or ALONE (green) after

start_prim script (stopped before

stop_prim)

 when="both" (farm module case):

custom checker started on all servers

 UP (green) after start_both script

(stopped before stop_both)

Manage the resource custom.id to

perform the action:

 in the script customscript:

on error: safekit set -r custom.id–v down –i

customscript

on success: safekit set -r custom.id–v up –i

customscript

in userconfig.xml:

<failover>

<![CDATA[

customid_failure: if (custom.id ==

down) then restart ();

]]>

</failover>

or

<failover>

<![CDATA[

customid_failure: if (custom.id ==

down) then stopstart ();

]]>

</failover>

Cause the error tested by custom checker on

the server in state (green). That is in state

PRIM, ALONE or SECOND for a mirror module; UP

for a farm module:

 messages in the log

"Resource custom.id set to down by customscript"

"Action restart from failover rule customid_failure"

"Transition RESTART from failover rule
customid_failure"

 the module becomes (magenta),

respectively in state PRIM, ALONE or UP

 in the restart case, the module becomes

(green), respectively state PRIM, ALONE or
UP

 in the stopstart case, the module becomes

 (green), respectively in state SECOND,

ALONE or UP

message in the log

"Action start called automatically"

Note: a stopstart on (green) PRIM causes

a failover

Repeat the test on the same server if it still

runs the application (i.e. (green) in state

ALONE or UP):

 with the default values of maxloop="3"

loop_interval="24" (userconfig.xml

<service>)

 after 4 restarts on the same server, the

module becomes STOP (red)

 in the log, message before stopping:
"Stopping loop"

SafeKit User's Guide

94 39 A2 19MC 01

4.4.8.2 Action through a command in the custom checker

In userconfig.xml:

<custom ident="id" when="prim "

exec="customscript" >

</custom>

 script
SAFE/module/<name>/bin/customsc

ript is a custom checker: loop with

a test on the application integrated in

the scripts

 when="prim" (mirror module case):

custom checker started on the server

 PRIM or ALONE (green) after

start_prim script (stopped before

stop_prim)

 when="both" (farm module case):

custom checker started on all servers

 UP (green) after start_both script

(stopped before stop_both)

On error, run command

restart|stopstart:

 in the script customscript:

on error: safekit restart -i customscript

or

safekit stopstart -i customscript

 action restart: run only scripts

stop_xx ; start_xx

 action stopstart: stop completely the

module and then restart it

Cause the error tested by custom checker on

the server in state (green). That is in state

PRIM, ALONE or SECOND for a mirror module, UP

for a farm module:

 messages in the log

"Action restart called by customscript"

Or

"Action stoptart called by customscript"

 the module becomes (magenta),

respectively in state PRIM, ALONE or UP

 in the restart case, the module becomes

(green), respectively in state PRIM, ALONE or
UP

 in the stopstart case, the module becomes

 (green), respectively in state SECOND,

ALONE or UP

message in the log

"Action start called automatically"

Note: a stopstart on (green) PRIM causes

a failover

Repeat the test on the same server if it still

runs the application (i.e. (green) in state

ALONE or UP):

 with the default values of maxloop="3"

loop_interval="24" (userconfig.xml

<service>)

 after 4 restarts on the same server, the

module becomes STOP (red)

 in the log, message before stopping:
"Stopping loop"

Note: on a direct action in the custom checker,

the loop counter is incremented if –i identity

is passed to the command restart or stopstart.

Without identity, SafeKit considers the

command is as an administrative operation. The

counter is reset and there is no stop after 4

restarts.

39 A2 19MC 01 95

5. Mirror module administration

 5.1 “Operating mode of a mirror module” page 95

 5.2 “State automaton of a mirror module (STOP, WAIT, ALONE, PRIM, SECOND - red,

magenta, green)” page 96

 5.3 “First start-up of a mirror module (prim command)” page 97

 5.4 “Different reintegration cases (use of bitmaps)” page 98

 5.5 “Start-up of a mirror module with the up-to-date data (STOP (red) - WAIT

(red))” page 99

 5.6 “Degraded replication mode (ALONE (green) degraded)” page 100

 5.7 “Automatic or manual failover (failover="off" - STOP (red) - WAIT (red))”

page 101

 5.8 “Default primary server (automatic swap after reintegration)” page 103

 5.9 “Prim command fails: why? (command primforce)” page 104

5.1 Operating mode of a mirror module

To test a mirror module, see section 4.2 page 72

 PRIM SECOND (green)

 (green)

ip 1.1 ip 1.2

 ip 2.1 ip2.2

virtual ip= ip 1.10

mirror(app1)= app1

 files1 files1

 STOP ALONE

(red) (green)

ip 1.1 ip 1.2

 ip 2.1 ip2.2

virtual ip= ip 1.10

mirror(app1)= failure app1

 files1 files1

 SECOND PRIM

(green) (green)

ip 1.1 ip 1.2

 ip 2.1 ip2.2

virtual ip= ip 1.10

mirror(app1)= app1

 files1 files1

SafeKit User's Guide

96 39 A2 19MC 01

5.2 State automaton of a mirror module (STOP, WAIT, ALONE,

PRIM, SECOND - red, magenta, green)

To analyze a problem, see section 7 page 109

 STOP (red): module stopped

 WAIT (magenta): in start-up phase

 WAIT (red): blocked because of a resource="down"

 ALONE (magenta): primary without secondary; executing application scripts

 (start_prim or stop_prim)

 ALONE (green): primary without secondary; stable; application is started

 SECOND (magenta): in the process of reintegrating data from the primary before

 becoming secondary

 SECOND (green): secondary with primary; stable; ready to

 resume the application and to become primary

 PRIM (magenta): primary with secondary; executing application scripts

 (start_prim or stop_prim)

 PRIM (green): primary with secondary; stable; application is

 started

STOP WAIT WAIT

ALONE ALONE SECOND

PRIM

red red magenta

magenta magenta

magenta

green green

green

SECOND

PRIM

safekit start –m AM safekit stop –m AM

safekit swap –m AM

safekit restart –m AM

failover
if the other

PRIM server is
stopped

the other
server is
started in
SECOND

 Mirror module administration

39 A2 19MC 01 97

5.3 First start-up of a mirror module (prim command)

At first start-up of a mirror module, if both servers are started with the start

command, both go into WAIT (red) state with the message "Data may be not uptodate

for replicated directories (wait for the start of the remote server)" in the log.

At first start-up of a mirror module, use the special prim command on the server with

the up-to-date directory, and the second command on the other one. Data is

synchronized from the primary server to the secondary one.

For next start-up, use the start command on both servers.

1. initial state

 the mirror module has just been configured

with a new directory to replicate between

server 1 and server 2

 server 1 has the up-to-date directory

 server 2 has an empty directory

 STOP STOP

 (red) (red)

 Up-to-date empty

2. command prim on server 1

 use the special prim command to force server

1 to become primary

 for following start-ups, always prefer start:

see section 5.5 page 99

 message in the log:

"Action prim called by web@<IP>/SYSTEM/root"

 ALONE STOP

 (green) (red)

 Up-to-date empty

3. command second on server 2

 start the other server as secondary

 the secondary reintegrates replicated

directory from primary

 message in the log:

"Action second called by web@<IP>/SYSTEM/root"

 PRIM SECOND

 (green) (green)

 Up-to-date up-to-date

SafeKit User's Guide

98 39 A2 19MC 01

5.4 Different reintegration cases (use of bitmaps)

To optimize file reintegration, different cases are considered:

1. The module must have completed the reintegration (on the first start of the

module, it runs a full reintegration) before enabling the tracking of modification into

bitmaps

2. If the module was cleanly stopped on the server, then at restart of the secondary,

only the modified zones of modified files are reintegrated, according to a set of

modification tracking bitmaps.

3. If the server crashed (power off) or was incorrectly stopped (exception in nfsbox

replication process), or if files have been modified while SafeKit was stopped, the

modification bitmaps are not reliable, and are therefore discarded. All the files

bearing a modification timestamp more recent than the last known synchronization

point minus a grace delay (typically one hour) are reintegrated.

4. A call to the special second fullsync command triggers a full reintegration of all

replicated directories on the secondary when it is restarted.

1. secondary server2 has been stopped

 data is desynchronized

 ALONE STOP

 (green) (red)

 Up-to-date not up-to-date

2. start command on server 2

 data is reintegrated with bitmap optimization

(see above)

 PRIM SECOND

 (green) (magenta)

 Up-to-date up-to-date

3. end of reintegration

 data is the same on both servers

 only modifications inside files are replicated

with a real-time synchronous replication

 PRIM SECOND

 (green) (green)

 =

 Up-to-date up-to-date

 Mirror module administration

39 A2 19MC 01 99

The replication system also keeps track of the last date on which data was synchronized

on each node. This synchronization date, named synctimestamp, is assigned at the end

of the reintegration and changes in the PRIM (green) and SECOND (green) states.

When the module is stopped on the secondary node and then restarted, the

synctimestamp is one of the reintegration criteria: all files modified around this date are

potentially out of date on the secondary and must be reintegrated. Since SafeKit

7.4.0.50, the synchronization date is also used to implement an additional security.

When the difference between the synchronization date stored on the primary and on the

secondary is greater than 90 seconds, the replicated data is considered unsynchronized

in its entirety. The reintegration is interrupted with the following message in the module

log:

| 2021-08-06 08:40:20.909224 | reintegre | E | Automatic synchronization

cannot be applied due to an abnormal delta between the dates of the last

synchronization

If the administrator considers that the server is valid, he can force the start in secondary

with full synchronization of the data, by executing the command: safekit second

fullsync -m AM.

5.5 Start-up of a mirror module with the up-to-date data (

STOP (red) - WAIT (red))

SafeKit determines which server must start as primary or not. SafeKit retains the

information on the server with the up-to-date replicated directories. To take

advantage of this feature, use the command start and NOT the command prim

1. initial state

 server1 is primary ALONE

 directories are up-to-date on this server

 the module is stopped on server 2

 server 2 has desynchronized replicated

directories

 ALONE STOP

 (green) (red)

 Up-to-date not up-to-date

2. command stop on server 1

 stop of the server with the up-to-date

directories

 STOP STOP

 (red) (red)

 Up-to-date not up-to-date

SafeKit User's Guide

100 39 A2 19MC 01

3. command start on server 2

 the module is put in the WAIT state waiting

for the start of the other server and within

its log of messages:

"Data may be not uptodate for replicated directories
(wait for the start of the remote server)"
"Action wait from failover rule notuptodate_server"
"If you are sure that this server has valid data, run
safekit prim to force start as primary"

 in this case, you must start server1 to

resynchronize data of server2

 if you really want to sacrifice the up-to-date

data and start server 2 as primary with the

data not up-to-date: issue a stop command

then a prim command on server 2

 STOP WAIT

 (red) (red)

 Up-to-date not up-to-date

 rfs.uptodate = down

See also 5.9 “Prim command fails: why? (command primforce)” page 104

5.6 Degraded replication mode (ALONE (green) degraded)

If the replication process nfsbox fails on the primary server (for instance because of

an unrecoverable replication problem), the application is not swapped on the

secondary server

The primary server goes to the ALONE state in a degraded replication mode.

Degraded is displayed in the web console/ Control/ under the ALONE server. A

"Resource rfs.degraded set to up by nfsadmin" message is emitted in the log.

safekit state –v –m AM returns resource rfs.degraded up (replace AM by the

module name)

The primary server continues in ALONE state with a nfsbox process which does not

replicate anymore.

You must stop and start the ALONE server to come back to a PRIM – SECOND state

with replication

1. initial state

 the mirror is in a stable state server 1

 PRIM (green) – server 2 SECOND

(green)

 PRIM SECOND

 (green) (green)

 Mirror module administration

39 A2 19MC 01 101

2. failure of replication process

nfsbox on server 1

 server 1 becomes ALONE (green)

degraded with the message in its log

"Resource rfs.degraded set to up by nfsadmin".

safekit state –v AM returns

resource rfs.degraded=up (where AM

is the module name)

 server 1 ALONE continues to execute

the application without replication

 server 2 is in WAIT (red) waiting for

the replication process with the

message in its log

"Action wait from failover rule degraded_server"

and with rfs.uptodate=down

 ALONE WAIT

 (green) (red)

rfs.degraded=up rfs.uptodate=down

3. come back to replication

 administrator makes stop command

and start command on server 1 ALONE

 the nfsbox replication process is

restarted on server 1

 server 2 reintegrates replicated

directories before becoming SECOND

(green)

 server 1 becomes PRIM (green)

 PRIM SECOND

 (green) (green)

5.7 Automatic or manual failover (failover="off" - STOP

(red) - WAIT (red))

Automatic or manual failover on the secondary server is defined in userconfig.xml

by <service mode="mirror" failover="on"|"off">. By default, if the parameter is

not defined, failover="on"

The failover="off" mode is useful when the failover must be controlled by an

administrator. This mode ensures that an application runs always on the same

primary server whatever operations are made on the server (reboot, temporary stop

of the module for maintenance...). Only an explicit administrative action (prim

command) may promote the other server as primary.

Note: Failover mode could be set dynamically on a running cluster with the safekit

failover on|off –v AM line command (replace AM by the module name) or from

the web console in action menu.

SafeKit User's Guide

102 39 A2 19MC 01

1. initial state

 the mirror is in a stable state server 1

PRIM (green) – server 2 SECOND (green)

 PRIM SECOND

 (green) (green)

2. restart with failover="on"

 if server 1 former PRIM fails and stops,

server 2 becomes automatically ALONE

(default mode)

 STOP ALONE

 (red) (green)

3. behavior with failover="off"

 if server 1 former PRIM fails and stops,

server 2 goes to WAIT (red) state with

message in its log

"Failover-off configured"
"Action stopstart called by failover-off"
"Transition STOPSTART from failover-off"
"Local state WAIT red "

 the administrator in this situation can

restart server 1: the mirror restarts in its

former stable state server 1 PRIM (green)

– server 2 SECOND (green)

 the administrator can decide to force server

2 to become primary with the command:

stop then prim on server 2

 STOP WAIT

 (red) (red)

See also section 5.9 page 101

 Mirror module administration

39 A2 19MC 01 103

5.8 Default primary server (automatic swap after

reintegration)

After reintegration at failback, a server becomes by default secondary. The

administrator may choose to swap the application back to the reintegrated server at

an appropriate time with the swap command. This is the default behavior when

userconfig.xml <service> is defined without the defaultprim variable

If the application must automatically swap back to a preferred server after

reintegration, specify a defaultprim server in userconfig.xml: <service

mode="mirror" defaultprim="hostname server 1">

1. initial state

 server 1 (former PRIM) fails and stops

 server 2 secondary becomes automatically
ALONE

 STOP ALONE

 (red) (green)

2. reintegration without defaultprim

 server 1 is restarted with command start

 it reintegrates replicated directories and

then becomes secondary

 an administrator can swap the primary to

server 1 with the command swap in a timely

manner

 swap stops the application on server 2 and

restarts it on server 1

 SECOND PRIM

 (green) (green)

3. reintegration with

defaultprim="hostname server 1"

 server 1 in STOP (red) at step 1 (initial

state) is restarted by command start

 it reintegrates replicated directories

 just after reintegration, an automatic swap

is made on server 1 with the message in its

log:

"Transition SWAP from defaultprim"
"Begin of Swap"

 the application is then automatically stopped

on server 2 and restarted on server 1

 at the end, server 1 is PRIM

 PRIM SECOND

 (green) (green)

SafeKit User's Guide

104 39 A2 19MC 01

5.9 Prim command fails: why? (command primforce)

A prim command may fail to start a server as primary: after trying a start-up, the

server goes back to STOP (red).

1. initial state

 server 1 ALONE has the up-to-date directory

 server 2 is in the process of reintegrating files

from server 1

 ALONE SECOND

 (green) (magenta)

 Up-to-date partially reintegrated

2. command stop on server 2 then on server 1

 stop of server 2 during its reintegration: stop of

server 2 can be made while a file that is half

copied (corrupted file)

 server 1 is also stopped

 STOP STOP

 (red) (red)

 Up-to-date partially reintegrated

3. command prim on server 2

 fails with messages in the log described above

"Data may be inconsistent for replicated directories (stopped
during reintegration)"
"If you are sure that this server has valid data, run safekit
primforce to force start as primary"

 in this case, you must start server 1 with start

command or prim command. And to restart

server 2 with start command to finish

reintegration of files. While server 2 is not in the

state SECOND green, its data may be

corrupted

 if you absolutely want to start as primary on

server 2 partially reintegrated and with data

potentially corrupted, use the command safekit

primforce –m AM on server 2 (command line

only, where AM is the module name). Message

in the log:

"Action primforce called by SYSTEM/root"

 STOP STOP

 (red) (red)

 Up-to-date partially reintegrated

 command prim fails

 because data

 may be corrupted

Note: The safekit primforce –m AM command forces a full reintegration of replicated

directories on the secondary when it is restarted.

39 A2 19MC 01 105

6. Farm module administration

 6.1 “Operating mode of a farm module” page 105

 6.2 “State automaton of a farm module (STOP, WAIT, UP - red, magenta, green)

page 106

 6.3 “Start-up of a farm module” page 107

6.1 Operating mode of a farm module

To test a farm module, see section 4.3 page 79.

 UP UP UP

(green) (green) (green)

ip 1.1 ip 1.2 ip 1.3

virtual ip= ip 1.20 ip 1.20 ip 1.20

farm(app2)= app2 app2 app2

 UP STOP UP

(green) (red) (green)

ip 1.1 ip 1.2 ip1.3

virtual ip= ip 1.20 ip 1.20

farm(app2)= app2 app2

 UP UP UP

(green) (green) (green)

ip 1.1 ip 1.2 ip1.3

virtual ip= ip 1.20 ip 1.20 ip 1.20

farm(app2)= app2 app2 app2

SafeKit User's Guide

106 39 A2 19MC 01

6.2 State automaton of a farm module (STOP, WAIT, UP - red,

magenta, green)

To analyze a problem, see section 7 page 109

 STOP (red): module stopped

 WAIT (magenta): in the start-up phase

 WAIT (red): blocked because of a resource="down"

 UP (magenta): executing application scripts (start_both or stop_both)

 UP (green): stable with application started

Note: This is also the state automation of a light module. A light module is identified by

<service mode="light"> in userconfig.xml file under SAFE/modules/AM/conf (where

AM is the module name). The light type corresponds to a module that runs on a server

without synchronizing with other servers (as can-do mirror or farm modules). A light

module includes the start and stop of an application as well as the SafeKit checkers that

can detect errors.

STOP WAIT WAIT

UP

red red magenta

magenta green

UP

safekit start –m AM safekit stop –m AM

safekit restart –m AM

 Farm module administration

39 A2 19MC 01 107

6.3 Start-up of a farm module

Use the start command on each server running the module. An example with a farm

of 2 servers is presented below.

1. initial state

 the farm module has just been configured on

server 1 and server 2

 STOP STOP

 (red) (red)

2. command start on server 1 and server 2

 message in the log of both servers:

"farm membership: node1 node2 (group FarmProto)"
"farm load: 128/256 (group FarmProto)"
"Local state UP green"

 resource of the module instance on both

servers: FarmProto 50%

 UP UP

 (green) (red)

SafeKit User's Guide

108 39 A2 19MC 01

39 A2 19MC 01 109

7. Troubleshooting

 7.1 “Connection issues with the web console” page 109

 7.2 “Connection issues with the HTTPS web console” page 111

 7.3 “How to read logs of the module?” page 114

 7.4 “How to read the commands log of the server?” page 115

 7.5 “Stable module (green) and (green)” page 115

 7.6 “Degraded module (green) and (red)” page 115

 7.7 “Out of service module (red) and (red)” page 116

 7.8 “Module STOP (red): restart the module” page 116

 7.9 “Module WAIT (red): repair the resource="down"” page 117

 7.10 “Module oscillating from (green) to (magenta)” page 118

 7.11 “Message on stop after maxloop” page 119

 7.12 “Module (green) but non-operational application” page 120

 7.13 “Mirror module ALONE (green) / WAIT or STOP (red)” page 121

 7.14 “Farm module UP (green) but problem of load balancing in a farm” page 122

 7.15 “Problem after Boot” page 122

 7.16 “Analysis from snapshots of the module” page 123

 7.17 “Problem with the size of SafeKit databases” page 127

 7.18 “Problem for retrieving the certification authority certificate from your PKI” page

128

 7.19 “Still in Trouble” page 132

7.1 Connection issues with the web console

If you encounter problems for connecting to the SafeKit web console to SafeKit node,

such as no reply or connection error, run the following checks and procedures:

 7.1.1 “Browser check” page 109

 7.1.2 “Browser state clear” page 110

 7.1.3 “Server check” page 110

Then, it may be necessary to reload the console into the browser.

7.1.1 Browser check

For the web browser, check:

✓ that it is a supported browser and its level (Chrome works better than Internet

Explorer in many environments)

✓ change the proxy settings for direct or indirect connection to the server

SafeKit User's Guide

110 39 A2 19MC 01

✓ with Internet Explorer, change the security settings (add the URL into the trusted

zones)

✓ clear the browser's state on upgrade as described below

✓ that the web console and the server are at the same level (backward compatibility

may not be fully preserved)

7.1.2 Browser state clear

1. Clear the browser cache

A quick way to do this is a keyboard shortcut that works on IE, Firefox, and Chrome.

Open the browser to any web page and hold CTRL and SHIFT while tapping the

DELETE key. (This is NOT CTRL, ALT, DEL). The dialog box will open to clear the

browser. Set it to clear everything and click Clear Now or Delete at the bottom

2. Clear the browser SSL cache if HTTPS is used

Look at advanced settings for the browser and search for SSL cache.

Finally close all windows for the browser, stop the browser process still running in the

background if necessary, and re-open it fresh to test what wasn't working for you

previously.

7.1.3 Server check

On each SafeKit cluster node check:

✓ the firewall

If this has not yet been done, run the SAFE/bin/firewallcfg add command which

configures the operating system firewall. For other firewalls, add an exception to

allow connections between the web browser and the server. For details, see section

10.3 page 156.

✓ the web server configuration

Since SafeKit 7.5, HTTP access to the web console requires authentication. If it has

not yet been done, run the SAFE/bin/webservercfg -passwd pwd to initialize (or

reinitialize) this configuration with the password of the user admin. For details, see

11.2.1 page 179.

✓ the network and the server availability

✓ the safeadmin and safewebserver services

They must be started.

✓ the SafeKit cluster configuration

Run the command safekit cluster confinfo (see section 9.3 page 144). This

command must return on all nodes, the same list of nodes and the same value for the

configuration signature. If not, reapply the cluster configuration on all nodes (see

section 12.2 page 231).

 Troubleshooting

39 A2 19MC 01 111

7.2 Connection issues with the HTTPS web console

If you encounter problems for connecting the secure SafeKit web console to SafeKit

nodes, you can run the following checks and procedures:

 7.1 “Connection issues with the web console” page 109

 7.2.1 “Check server certificate” page 111

 7.2.2 “Check certificates installed in SafeKit” page 112

 7.2.3 “Check client certificates” page 113

 7.2.4 “Revert to HTTP configuration” page 114

7.2.1 Check server certificates

The SafeKit web console connects to a SafeKit node that is identified by a certificate. To

get the SafeKit node certificate content with Internet Explorer or Chrome, run the

following:

1. Click on the lock next to the URL

to open the security report

2. Click on the View certificates link.

It opens a window that displays

the certificate content

SafeKit User's Guide

112 39 A2 19MC 01

3. Check the issuer that must be the

appropriate certification authority

4. Check the validity date and the

workstation date. If necessary,

change the workstation date

5. Check the validity date. If the

certificate is expired, you must renew.

For certificate generated with the

SafeKit PKI, see section 11.6.2 page

221

6. Click on Details tab

7. Select Subject Alternate Name field. Its

content is displayed into the bottom

panel. The location set into the URL for

connecting the SafeKit web console must

be included into this list. Change the URL

if necessary

8. localhost and 127.0.0.1 must be present

9. The address value for the node, set into

the SafeKit cluster configuration, must

be one of the values listed. If it is not,

change the cluster configuration as

described in 12.2 page 231.

When using DNS name, you must use

lower case.

With SafeKit <= 7.5.2.9, the server’s

name must be included.

7.2.2 Check certificates installed in SafeKit

You can use the checkcert command for checking all the certificates.

On each SafeKit nodes:

 Troubleshooting

39 A2 19MC 01 113

1. Log as administrator/root and open a command shell window

2. Change directory to SAFE/web/bin

3. Run checkcert -t all

It checks all installed certificates and returns a failure if an error is detected

4. You can check that the server certificate contains some DNS name or IP address

with:

checkcert -h ”DNS name value”

checkcert -i ”Numeric IP address value”

The server certificate must contain all DNS names and/or IP addresses used for

HTTPS connection. These ones must also be included into the SafeKit cluster

configuration file.

7.2.3 Check client certificates

When client certification authentication is configured, Certificate Authority and client

certificates for the console must have been imported into the certificate store of the

user’s workstation. Check that certificates are present into the expected store. Below is

the procedure in Windows:

1. Log on to the workstation from which the user launches the console

2. Open a PowerShell console

3. Run certmgr

4. Locate Certificates - Current User\Personal\Certificates

It must contain the client certificate for the web console

If the certificate is not in the proper store, remove it from the store and import it

again as described in section 11.4.3.4 page 201.

5. Locate Certificates - Current User\Trusted Root Certification Authorities\Certificates

It must contain the certificate of the Certification Authority used to generate the client

certificate

SafeKit User's Guide

114 39 A2 19MC 01

If the certificate is not in the proper store, remove it from the store and import it

again as described in section 11.4.3.5 page 202.

You must also clear the browser cache as described in 7.1.2 page 110.

7.2.4 Revert to HTTP configuration

If the problem can not be solved, you can revert to the HTTP configuration (where

SAFE=C:\safekit in Windows if System Drive=C: ; and SAFE=/opt/safekit in Linux):

On S1 and S2:

 remove the file
SAFE/web/conf/ssl/httpd.webconsolessl.conf

On S1 and S2:

 run safekit webserver restart

You must then clear the browser cache as described in 7.1.2 page 110.

7.3 How to read logs of the module?

 SafeKit log for the module may be

displayed using (replace below AM by the

module name):

 the web console/ Control/Select the

node/Module Log tab/

 the web console/ Configuration or

Monitoring/ on the

node/Support/Save log/

 the command safekit logview –m AM

With the module log, you can understand

why the module is no longer in its stable

state (green) and (green).

Do not forget to also check output

messages of Application log in the web

console/ Control /Select the node

/Application Log tab/ or in
SAFEVAR/modules/AM/userlog.ulog

Note that a module can leave its stable

state (green) and (green) because

of an administrator command: safekit
start | stop | restart | swap |

stopstart | forcestop… -m AM

 You will find a list of SafeKit log messages

in the index: see Log Messages Index

page 337.

 Messages in the log after an administrator

command are:

"Action start called by web@<IP>/SYSTEM/root"
"Action stop called by web@<IP>/SYSTEM/root"
"Action restart called by web@<IP>/SYSTEM/root"
"Action swap called by web@<IP>/SYSTEM/root"
"Action stopstart called by web@<IP>/SYSTEM/root"
"Action forcestop called by web@<IP>/SYSTEM/root"

web@<ip>: via the SafeKit console

SYSTEM: command on Windows

root: command on Linux

 If "Stopping loop" appears in SafeKit log, see

section 7.11 page 119

 Troubleshooting

39 A2 19MC 01 115

7.4 How to read the commands log of the server?

There is a log of the safekit commands ran on the server.

SafeKit commands log may be displayed using:

 the web console/ Control/Select the node/Commands Log tab/ (it displays

safekit commands applied on the selected module and all global commands)

 the web console/ Advanced Configuration/Node tab/ Commands log/ (it

displays all the commands logged on this server)

 on the server side, the command safekit cmdlog

See section 10.9 page 175 for more details.

7.5 Stable module (green) and (green)

A stable mirror module on 2 servers is in the state PRIM (green) - SECOND

(green): the application is running on the PRIM server; on failure, the SECOND server is

ready to resume the application.

A stable farm module is in the state UP (green) on all servers of the farm: the

application is running on all servers.

7.6 Degraded module (green) and (red)

A degraded mirror module is in the state ALONE (green) - STOP/WAIT (red). There

is no recovery server, but the application is running on the ALONE server.

A degraded farm module is in the state UP (green) on at least one server of the

farm, the other servers being in the state STOP/WAIT (red). The application is

running on the UP server.

 In the degraded case, there is no emergency procedure to implement. Analysis of the

state STOP/WAIT (red) can be done later. However, you can attempt to restart the

module in a stable state:

 see 7.8 “Module STOP (red): restart the module” page 116

 see 7.9 “Module WAIT (red): repair the resource="down"” page 117

SafeKit User's Guide

116 39 A2 19MC 01

7.7 Out of service module (red) and (red)

An out of service mirror or farm module is in the state STOP/WAIT (red) on all

servers. In this case, the application is not operational on any server anymore. You

must restore the situation and restart the module in (green) on at least one server:

 see 7.8 “Module STOP (red): restart the module” page 116

 see 7.9 “Module WAIT (red): repair the resource="down"” page 117

7.8 Module STOP (red): restart the module

To restart the stopped module (replace below AM by the module name):

 web console/ Control / on the node/ Start/

 or command safekit start –m AM

 check that the module becomes (green)

And see results of start in the module and application logs:

 web console/ Control/Select the node/Module Log tab/ and Application Log tab

 or with the command safekit logview -m AM and

SAFEVAR/modules/AM/userlog.ulog).

 Troubleshooting

39 A2 19MC 01 117

7.9 Module WAIT (red): repair the resource="down"

If the module is in the state WAIT (red),

it waits for the state of a resource to

become "up".

You must identify and fix the problem that

caused the resource state to go down.

To determine the resource involved, see

the log messages:

 use web console/ Control/Select the

node/Module Log tab/ or web console/

Control/Select the node/Resources tab/

 or run the command safekit logview –m

AM (replace AM by the module name)

Notes:

A wait checker is started after the prestart

script and stopped before poststop

The checker is active on all servers

ALONE/PRIM/SECOND/UP (green)

The action of the checker upon detecting

an error is to set a resource to down

A failover rule referencing the resource

performs the stopwait action

The module is locally in state WAIT (red)

while the resource stays down

The module exits the WAIT (red) state

as soon as the checker sets the resource

back to up

Messages from wait checkers:

 files not up-to-date locally: see section 5

page 95

"Data may be not uptodate for replicated directories
(wait for the start of the remote server)"
"Action wait from failover rule notuptodate_server"
"If you are sure that this server has valid data, run
safekit prim to force start as primary"

 <interface check="on"> checker of a local

network interface

"Resource intf.ip.0 set to down by intfcheck"
"Action wait from failover rule interface_failure"

 <ping> checker of an external IP

"Resource ping.id set to down by pingcheck"
"Action wait from failover rule ping_failure"

 <module>: checker of another module

"Resource module.othermodule_ip set to down by
modulecheck"
"Action wait from failover rule module_failure"

 <tcp ident="id" when="pre">: checker of

an external TCP service

"Resource tcp.id set to down by tcpcheck"
"Action wait from failover rule tcpid_failure"

 <custom ident="id" when="pre">

customized checker

"Resource custom.id set to down by customscript"
"Action wait from failover rule customid_failure"

 <splitbrain> checker

“Resource splitbrain.uptodate set to down by
splitbraincheck"

…

"Action wait from failover rule splitbrain_failure"

Files not up-to-date locally due to split-

brain: see section 13.17 page 287

SafeKit User's Guide

118 39 A2 19MC 01

7.10 Module oscillating from (green) to (magenta)

If a module oscillates from state

(green) to state (magenta), it is

probably a victim of a restart or stopstart

checker which detects a constant error.

By default, after the 4th unsuccessful

restart on a server, the module stops, and

the server stabilizes in STOP (red).

Use the SafeKit log to determine which

checker is the source of the oscillation:

 use web console/ Control/Select the

node/Module Log tab/

 or run the command safekit logview –m

AM (replace AM by the module name)

Notes:

A restart or stopstart checker is defined in

userconfig.xml by when="prim"|"both"

(mirror|farm)

when="prim": checker started on the

server PRIM/ALONE (green) after script

start_prim (stopped before stop_prim)

and checking the application started in
start_prim

when="both": checker started on all

servers UP (green) after script

start_both (stopped before stop_both)

and checking the application started in
start_both

The action of a checker on an error is to

restart or stopstart the module. stopstart

on PRIM (green) leads to a failover of

the primary on the other server

The module is in the state PRIM/UP

(magenta) during the application restart

After several oscillations, the modules

stop with "Stopping loop" in SafeKit log: see

section 7.11 page 119

Messages from restart or stopstart

checkers:

 <errd> in userconfig.xml: checker of

processes

"event atleast on proc appli.exe"
"Action restart|stopstart called by errd"

 <tcp ident="id" when="prim"|"both"> in

userconfig.xml: TCP checker of the

application

"Resource tcp.id set to down by tcpcheck"
"Action restart|stopstart from failover rule
tcp_failure"

 <custom ident="id" when="prim"|"both">

in userconfig.xml: custom checker

"Resource custom.id set to down by customscript"
"Action restart|stopstart from failover rule
customid_failure"

or

"Action restart|stopstart called by customscript"

 Troubleshooting

39 A2 19MC 01 119

7.11 Message on stop after maxloop

If an error detected by a checker repeats

itself several times and successively, the

module is stopped on the server in STOP

(red): because the error is permanent,

and the action of the checker cannot

correct it

If in userconfig.xml, there is no

parameter maxloop / loop_interval in

<service>:

 by default, maxloop="3"
loop_interval="24"

 if the checkers generate more than 3

unsuccessful restarts (restart, stopstart,

stopwait) in less than 24H, then stop of

module: STOP (red)

The counter is reset to 0 if an

administrator executes an action on the

module such as safekit start –m AM

(replace AM by the module name) or

safekit stop –m AM (without the option

–i <identity>)

Message on stop after maxloop

"Stopping loop"

SafeKit User's Guide

120 39 A2 19MC 01

7.12 Module (green) but non-operational application

If a server has a status of PRIM (green) or ALONE (green) or UP (green), the

application can be non-operational because of undetected errors on start-up. Replace

below AM by the module name.

 Check the output messages of application scripts coming from start_prim/start_both

and stop_prim/stop_both: they are visible in the web console/ Control/Select the

node /Application Log tab/ or in SAFEVAR/modules/AM/userlog.ulog

 check in Application log if there are errors during start or stop of the application. Be

careful, sometimes the userlog is disabled because it is too large with <user

logging="none"> in userconfig.xml of the module

 check application scripts start_prim(/both) and stop_prim(/both) of a mirror(/farm)

and userconfig.xml: they are visible in the web console/ Advanced Configuration /

Installed modules/ module/ (bin and conf) or under SAFE/modules/AM

In case of a non-operational application, execute a restart on the module PRIM

(green) or ALONE (green) or UP (green) to stop and restart locally the application

(without failover):

 on PRIM (green) or ALONE (green) or UP (green), run the command restart

with the web console/ Control / on the node/Restart/ or with the command
safekit restart –m AM

 check that the application is operational on PRIM (green) or ALONE (green) or

UP (green)

If this procedure does not work, apply a stopstart of the module PRIM (green) or

ALONE (green) or UP (green) to stop and restart globally the module and the

application (stopstart makes a failover to SECOND when SECOND is started):

 on PRIM (green) or ALONE (green) or UP (green), run the command stopstart

with the web console/ Control/ on the node/Expert/StopStart/ or with the

command safekit stopstart –m AM

 check that the application is operational on PRIM (green) or ALONE (green) or

UP (green)

 Troubleshooting

39 A2 19MC 01 121

7.13 Mirror module ALONE (green) / WAIT or STOP (red)

If a mirror module stays in state (green) ALONE / (red) WAIT, check the “remote

state” resource on each node (Visible in web console / Control /Resources/Remote

state). If this state is UNKNOWN on the two nodes, there is probably a communication

problem between the nodes. This problem may also lead to (green) ALONE / (red)
STOP.

Possible root causes are:

 Real network problem

Check your network configurations on the two nodes.

 Firewall rules on one or the two nodes

For details, see section 10.3 page 156

 Not the same SafeKit cluster configuration or cluster cryptographic keys

To communicate, cluster nodes must belong to the same cluster and have the same

configuration (see section 12 page 227):

 The web console warns if nodes in the cluster nodes list have not an identical

configuration

 The command: safekit cluster confinfo on any nodes of the cluster must

report an identical configuration signature for all nodes of the cluster (see 9.3

page 144)

If the cluster configuration is not identical, re-apply the cluster configuration on all

cluster nodes. (web console/ Advanced Configuration or Configuration /Cluster

Configuration/select Advanced edit mode /Apply button)

 Not the same module cryptographic keys

If cryptographic has been enabled for the module (the encryption resource is “on” in

web console/ Control/Select the node/Resources tab) and the nodes do not have

the same keys for the module, the nodes will not be able to communicate for the

internal module communications. To distribute the same module cryptographic

keys, re-apply the module configuration on all nodes (web console /

Configuration/ on the module / Edit the configuration/Apply the

Configuration/Apply button). See section 10.5 page 162 for details.

 Expired cryptographic keys

In SafeKit <= 7.4.0.31, the key for encrypting the module communication has a

validity period of 1 year. When it expires in a mirror module with file replication, the

secondary fails to reintegrate and the module stops with an error message into the

log:

reintegre | D | XXX clnttcp_create: socket=7 TLS handshake failed

In SafeKit > 7.4.0.31, the message is:

reintegre | D | XXX clnttcp_create: socket=7 TLS handshake failed.
Check server time and module certificate (expiration date, hash)

To solve this problem, see 10.5.3.1 page 165

SafeKit User's Guide

122 39 A2 19MC 01

7.14 Farm module UP (green) but problem of load balancing in

a farm

Even though all servers in the farm are UP (green), load balancing is not working.

7.14.1 Reported network load share are not coherent

In a farm module, the sum of the network load share of all UP (green), module

nodes must be equal to 100% (See web console/ Control/Select the node/Resources

tab/Network Load Share).

If it’s not the case, there is probably a communication problem between module nodes.

Possible root causes are the same as for a mirror module. See section 7.13 page 121

for possible solutions.

See also section 4.3.6 page 83

7.14.2 virtual IP address does not respond properly

If the virtual IP does not respond properly to all requests for connections:

 choose a server in the farm that receives and processes connections on the virtual IP

address (established TCP connections): use the command (Windows) netstat –an |

findstr <virtual IP address> or (Linux) netstat –an | grep <virtual IP address>

 stop the farm module on all servers except the one that receives connections and that

remains UP (green)

• either in the web console/ Control/ on the node / Stop/

• or run the command safekit stop –m AM (replace AM by the module name)

 check that all connections to the virtual IP address are handled by the single server

UP (green)

For a more detailed analysis on this topic, see:

 4.3.4 “Test virtual IP address of a farm module” page 80

 4.3.5 “Test TCP load balancing on a virtual IP address” page 82

 4.3.7 “Test compatibility of the network with invisible MAC address” page 84

7.15 Problem after Boot

If you encounter a problem after boot, see section 4.1 page 69.

Note that by default, modules are not automatically started at boot. For this, you must

setup the boot start into the module’s configuration:

 with Edit the configuration that launches the web console/Configuration wizard

(described in section 3.3.2 page 44)

or

 in file userconfig.xml with the boot attribute of the service tag (see section

13.2.3 page 237)

 Troubleshooting

39 A2 19MC 01 123

7.16 Analysis from snapshots of the module

When the problem is not easily identifiable, it is recommended to take a snapshot of the

module on all nodes as described in section 3.5 page 54. A snapshot is a zip file that

collects, for one module, the configuration files, dumps, ... Its content allows an offline

and in-depth analysis of the module and node status.

The structure and content of the snapshot varies depending on the version

of SafeKit.

Since SafeKit 7.5, the structure of the snapshot is as follows:

 snapshot_nodename_AM

snapshot for the module AM get from the node

named nodename

 AM

Application module name

 config_year_month_day_hour_mn_sec

Last 3 configurations for the module, including

the current one

 dump_year_month_day_hour_mn_sec

Last 3 dumps for the module, including the

last one

 for the level 3 support

7.16.1 Module configuration files

The module configuration files are saved as follows:

module directory contains the user

configuration files

 bin directory

scripts start_xx, stop_xx, …

 conf directory

XML configuration userconfig.xml

 Check the user configuration file and scripts for troubleshooting with the application

integration into SafeKit

SafeKit User's Guide

124 39 A2 19MC 01

7.16.2 Module dump files

The dump contains the state of the module and the SafeKit node as it was at the time of

the dump.

 csv directory

logs and status in csv format

 licences directory

SafeKit licenses get from SAFE/conf

directory

 var directory

Extract of the SAFEVAR directory

 web directory

web server configuration get from

SAFE/web/conf directory

 Module logs (not verbose and verbose)

 Application log

 Information file

Various information about the node (list

and status of installed modules, OS

version, disk, and network configuration,

...)

Or

 System logs

last.txt and systemevt.txt in Linux

Or

applicationevt.txt and systemevt.txt

in Windows

 Commands log for the node

 Trace files for level 3 support

 Check the license file(s) into licenses directory for troubleshooting with the SafeKit

license check

 Check the Apache configuration files into web directory for troubleshooting with the

SafeKit web service

 Troubleshooting

39 A2 19MC 01 125

 Check the module logs, in log.txt and logverbose.txt, for troubleshooting with the

module behavior

 Check the user scripts log userlog.ulog for troubleshooting with application

start/stop

 If necessary, look at heartplug file for some information on the node and search the

system logs for events that occurred at the same time as the problem being analyzed

 Check the commands log commandlog.txt for troubleshooting with cluster

management or distributed commands

7.16.2.1 var directory

The var directory is mainly for the level 3 support. It is a copy of some part of the

SAFEVAR directory. In the var/cluster directory:

 look at the cluster.xml file for checking the cluster configuration

 look at the cluster_ip.xml file for checking the DNS name resolution of names into

the cluster configuration

7.16.2.2 csv directory

Since SafeKit 7.5, the logs and reports are also exported into csv format in the csv

directory:

 Logs and status of the module

Verbose log

Application log

Resources status

Resources status history

 Logs and status of the node

Commands log

List of installed modules

For the level 3 support

For the level 3 support

 Import the csv files into an Excel sheet to facilitate their analysis

To import a file:

1. Create a new sheet

2. From the Data tab, import From Text/CSV

SafeKit User's Guide

126 39 A2 19MC 01

3. In the dialog box, locate and double-click the csv file to import, then click

Import

4. Then click on Load

You can use the Excel features to filter rows according to the level of the messages, ...

and load in different sheets the csv of each node.

For the exact date, format cells with Number/Custom jj/mm/aaaa
hh:mm:ss,000

 Troubleshooting

39 A2 19MC 01 127

7.17 Problem with the size of SafeKit databases

Since SafeKit 7.5, SafeKit uses SQLite3 storage to save:

 The log and the status of the node

✓ SAFEVAR/log.db contains the commands log

✓ SAFEVAR/resource.db contains the list of installed modules and its history

These are referred to as node databases.

 The log and the resources of the module

✓ SAFEUSERVAR/log.db contains the module log

✓ SAFEUSERVAR/resource.db contains the state of the module resources and its

history

These are referred to as module databases.

The size of the logs and histories increases as events occur on the SafeKit node and

modules. Therefore, they should be purged regularly by deleting the oldest entries. This

is automatically done thanks to a periodic job (task scheduler in Windows; crontab in

Linux) that is controlled by the safeadmin service. The clean of the node databases is

always active. The clean of the module databases is active only when the module is

running. To check that the jobs are ready:

 Job for cleaning node databases

✓ In Windows, run schtasks /QUERY /TN safelog_clean

✓ In Linux, run crontab -u safekit -l

The output of this command must contain the safelog_clean entry

 Job for cleaning AM module databases (where AM is the module name)

✓ In Windows, run schtasks /QUERY /TN safelog_AM

✓ In Linux, run crontab -u safekit -l

The output of this command must contain the safelog_clean_AM entry

 The clean-up is implemented by a script located into SAFEBIN (in Linux,

SAFEBIN=/opt/safekit/private/bin; in Windows, SAFE=C:\safekit\private\bin - if

%SYSTEMDRIVE%=C:):

dbclean.ps1 in Windows

and

dbclean.sh in Linux

Clean the log and history in the node databases

dbclean.ps1 AM in Windows

and

dbclean.sh AM in Linux

Clean the log and history in the databases of the

module named AM

If necessary, you can run this script outside the scheduled period to force the databases

clean-up.

SafeKit User's Guide

128 39 A2 19MC 01

7.18 Problem for retrieving the certification authority certificate

from your PKI

When using your PKI, you must provide the certificate (the chain of certificates for the

root and intermediates Certification Authorities) of:

 the certification authority CA (cacert.crt file) used to issue server certificates

 the certification authority CLCA (clcacert.crt file) used to issue client

certificates, when client certificates authentication is used

If you have trouble retrieving these files from your PKI, you can build them using the

procedure described below.

7.18.1 Export CA or CLCA certificate(s) from public certificates

The following procedure explains how to build from a public certificate, the chain of

certificates for the root and intermediates Certification Authorities, into the file

combined.cer. This one can be used as:

 the SAFE/web/conf/cacert.crt file when it is generated from a server certificate

 the SAFE/web/conf/clcacert.crt file when it is generated from a client certificate. If

different CLCAs are used to generate the different types of client certificates

(distributed commands and web console certificates), run the following procedure for

each client certificates. Then, concatenate each resulting combined.cer files into the

final clcacert.crt file.

When using a personal certificate for the web console, you may not have the

associated public certificate. To get it, apply the procedure described in 7.18.2 page

130.

When you have the public certificate (.crt or .cer file in Base-64 encoded X.509 format)

generated by your PKI:

1. Copy the .crt (or .cer) file on a Windows workstation

2. Double click on this file to open it with “Crypto Shell Extensions”

3. Select the “Certification Path” tab to view the tree of certification authorities

4. Select an entry (from top to down except the leaf)

5. Click on “View Certificate”. A new window is opened with details for the selected

certificate

6. In this new window, select the “Details” tab and click “Copy to File”

 Troubleshooting

39 A2 19MC 01 129

7. It opens the Certificate Export Wizard:

a. Click on “Next” to continue

b. On the “Export File Format” page, select “Base-64 encoded X.509 (.CER).”,

and then click “Next”

c. For “File to Export”, “Browse” to the location to which you want to export the

certificate. Fill “File name” with the name of the certificate file. Then, click

“Next”

d. Click “Finish” to export the certificate

e. Your certificate is successfully exported

SafeKit User's Guide

130 39 A2 19MC 01

8. Now repeat steps 4-7 for all entries (except the last one) to export all intermediate

CA certificates in the Base-64 encoded X.509(.CER) format. For the example, you

would repeat steps 4-7 on SSSL.com RSA subCA intermediate CA to extract it as its

own certificate.

9. Concatenate all your CA certificates into one file combined.cer

Run the following command with all the CA certificates you extracted earlier:

 In Windows:

type intermediateCA.cer rootCA.cer > combined.cer

 In Linux:

cat intermediateCA.cer rootCA.cer >> combined.cer

The resulting combined certificate should look something like the following:

7.18.2 Export public certificate

When using your personal certificate for the web console, you may not have the

associated public certificate. To get it, apply the following procedure:

1. On your Windows workstation, open “Manage user certificates” (certmgr.msc)

 Troubleshooting

39 A2 19MC 01 131

2. Locate the certificate, typically in “Certificates - Current User\Personal\Certificates”,

and right-click. If the user has several certificates, select the one with "Client

Authentication" as "Expected Roles" and whose "Expiration Date" has not passed

3. Click “All Tasks”, and then click “Export”. This opens the Certificate Export Wizard.

If you can't find the certificate under “Current User\Personal\Certificates”, you may

have accidentally opened "Certificates - Local Computer", rather than "Certificates -

Current User". If you want to open Certificate Manager in current user scope using

PowerShell, you type certmgr in the console window.

4. In the Certificate Export Wizard, click “Next”

5. Select “No, do not export the private key”, and then click “Next”

6. On the “Export File Format” page, select “Base-64 encoded X.509 (.CER).”, and then

click “Next”

SafeKit User's Guide

132 39 A2 19MC 01

7. For “File to Export”, “Browse” to the location to which you want to export the

certificate. Fill “File name” with the name of the certificate file. Then, click “Next”

8. Click “Finish” to export the certificate

9. Your certificate is successfully exported

The exported certificate looks like this:

At this step, you can apply the procedure described in 7.18.1 page 128, to export the

Certification Authority certificate(s) from this public certificate.

7.19 Still in Trouble

 See Messages Index page 337

 See section 8.5 page 135 for opening a ticket at the call desk

39 A2 19MC 01 133

8. Access to Evidian support

 8.1 Home page of support site” page 133

 8.2 “Permanent license keys” page 134

 8.3 “Create an account” page 134

 8.4 “Access to your account” page 135

 8.5 “Call desk to open a trouble ticket” page 135

 8.6 “Download and upload area” page 139

 8.7 “Knowledge base” page 140

8.1 Home page of support site

 https://support.evidian.com

 Software Keys: get permanent keys

 Subscription Request: create an account

 Download: download product or upload snapshots

 Call desk: tool for opening a call on problem

 Knowledge Base: base of KB

https://support.evidian.com/

SafeKit User's Guide

134 39 A2 19MC 01

8.2 Permanent license keys

 https://support.evidian.com

 Software Keys: get permanent

keys

 Fill-in the form with the delivery

note sent after a purchase order

 Take "hostname" and OS of your

servers

 To obtain a temporary key for any

hostname and any OS, for details

see section 2.1.5 page 28

8.3 Create an account

 https://support.evidian.com

 Subscription Request: create an

account

 The procedure must be executed

once with:

- Your client identity

- Your confidential identity

- A unique e-mail address

 Note: your identities are sent by

mail if you take an Evidian

support contract

 What you will obtain: a user

account and a private password

on the site

https://support.evidian.com/
https://support.evidian.com/

 Access to Evidian support

39 A2 19MC 01 135

8.4 Access to your account

 https://support.evidian.com

 Login on top at right with your

identity and password

 Then you have access to all

services of support site

8.5 Call desk to open a trouble ticket

8.5.1 Call desk operations

 https://support.evidian.com

 Call desk: tool to open a

trouble ticket on problem with

2 main operations

 Create a call

 Search for a Call and exchange

with support on a Call

1. Create a call

2. Search and update

3. Remote access

4. Report on calls

https://support.evidian.com/
https://support.evidian.com/

SafeKit User's Guide

136 39 A2 19MC 01

8.5.2 Create a call

 In the header, specify the SafeKit version, problem type and priority as well as the

module name and the OS

 Summarize the problem and then describe with more details the scenario and the date

and time of the problem

 Snapshots of the SafeKit module causing problem are necessary for the analysis. See

next section for attaching snapshots

 Create the call by pressing "Submit"

 Access to Evidian support

39 A2 19MC 01 137

8.5.3 Attach the snapshots

 When there is a problem on a SafeKit module, snapshots of the module on all servers are

necessary for analysis

 To get snapshots, see section 3.5 page 54

 If the snapshots size is smaller than 10 MBytes, you can attach them with the opening of

the call by clicking on "Add"

 Otherwise, downloading snapshots on the support site may take several minutes. In this

case indicate in "Remark text" that you download them into your private upload area:

see section 8.6.3 page 140

SafeKit User's Guide

138 39 A2 19MC 01

8.5.4 Answers to a call and exchange with support

 All exchanges between the support and the customer are made with "Remarks"

 When support adds a remark on a call, the customer is notified by mail. This is the case

for first response of the support after the opening of the call

 After consultation of the last remark of support, the customer can add a new remark in

turn

 The exchange takes place until the closure of the call by agreement between the

customer and Evidian support

 Access to Evidian support

39 A2 19MC 01 139

8.6 Download and upload area

8.6.1 Two areas of download and upload

 https://support.evidian.com

 Product download area: area for

downloading SafeKit packages

 Private area [client identity]:

private area to upload files

8.6.2 Product download area

 Go to <Version

7.5>/Platforms/<Your

platform>/Current versions

 Download the SafeKit package

 For more information on

installation, documentation,

upgrade, see section 2 page 25

https://support.evidian.com/

SafeKit User's Guide

140 39 A2 19MC 01

8.6.3 Private upload area

 Create a directory for a

problem

 Upload snapshots in this

directory with

 For building snapshots, see

section 3.5 page 54

 For attaching snapshots, see

section 8.5.3 page 137

8.7 Knowledge base

 https://support.evidian.com

 Knowledge Base: base of KB

 Search for example all articles on

the errd component of SafeKit

https://support.evidian.com/

39 A2 19MC 01 141

9. Command line interface

 9.1 “Distributed commands” page 141

 9.2 “Command lines for boot and for shutdown” page 142

 9.3 “Command lines to configure and monitor safekit cluster” page 144

 9.4 “Command lines to control modules” page 146

 9.5 “Command lines to monitor Modules” page 148

 9.6 “Command lines to configure Modules” page 149

 9.7 “Command lines for support” page 151

9.1 Distributed commands

Almost all safekit commands can be applied on a list of cluster nodes.

Exceptions are safekit logview, safekit -p and safekit -r commands which can be

used only locally.

The distributed command line interface requires the execution of the SafeKit web service

on each node of the list (see section 10.6 page 167).

safekit -H <url>

[,<url,...] <action>

<arg>

Execute action on servers specified by the URL list.

URLs must be separated by commas.

Instead of URLs, it is possible to use a comma

separated list of server names as they appear in the

cluster.xml file. Associated URLs are automatically built

as https:9453 or http:9010 (depending on

SAFE/web/conf/ssl/ content)

The special syntax –H “*” stands for all the nodes

declared in the cluster.xml admin lan.

To override protocol and port, use the

[<protocol>:<port>] syntax. The ‘:<port>’ part is

optional. Protocol may be ‘http’ or ‘https’. Default port

for http protocol is 9010.

Example: safekit -H
http://192.168.0.2:9010,http://192.168.0.3:9010

module list

safekit –H "*" module list

safekit –H "[http],*" module list

safekit –H "[https:9500],server1,server2"
module list

SafeKit User's Guide

142 39 A2 19MC 01

safekit

[-H <url>[,...]]

-E <module>

Deploy the locally installed <module> on the servers

specified -H parameter.

This command performs the following actions:

 creates <module>.safe from local
SAFE/modules/<module>

 transfers and installs <module>.safe on the list of

servers

 if the module was configured locally, configures it on

remote servers

Example: safekit -E farm will export the local farm

module to the list of servers specified in

SAFEVAR/default_cluster.txt (see example above

for syntax of default_cluster.txt)

safekit [-H <url>[,…] -G

Deploy the local cluster configuration files on all the

servers specified–H. This command performs the

following actions:

 Collect the content of the SAFEVAR/cluster directory

 Transfer and copy the collected files into the target

servers’ SAFEVAR/cluster directory

 Trigger safeadmin configuration reload

9.2 Command lines for boot and for shutdown

Use the following commands for starting/stopping SafeKit services, configuring services

and modules automatic start/stop on boot/shutdown, stopping all running modules.

In Windows, you may have to apply the procedure described in 10.4 page 161.

safeadmin

(Windows)

SafeKit main service mandatory and started automatically at

boot. safeadmin can be controlled using the Windows Services

Control Panel applet

service safeadmin

start (Linux)

SafeKit main service mandatory and started automatically at

boot

safekit webserver

[start | stop |

restart]

Controls start/stop/restart of the safewebserver service. This

service is used by the web console, module checkers and

distributed command line interface. The command starts the

httpd processes and waits for their start-up

safekit safeagent

[start | stop |

restart | check]

Controls start/stop of the safeagent service that implements

the SafeKit SNMP agent

 Command line interface

39 A2 19MC 01 143

safekit boot

[webon | weboff |

webstatus]

Controls the automatic start at boot of the safewebserver

service ("on" or "off"; by default, "on")

safekit boot

[snmpon | snmpoff

| snmpstatus]

Controls the automatic start at boot of the safeagent service

("on" or "off"; by default, "off")

safekit boot [–m

AM] [on | off |

status]

Controls whether the AM module starts automatically at boot or

not ("on" or "off"; by default, "off")

Without the option –m AM, lists the boot status of all modules.

Since SafeKit 7.5, the boot start of a module can be

defined in the module configuration with the boot

attribute of the service tag in userconfig.xml. This

configuration option makes the safekit boot -m AM

on | off deprecated. However, this is still supported

and replaces the module configuration, provided that

the boot attribute is not present or set with the value

ignore.

safekit shutdown Stops all running modules

SafeKit User's Guide

144 39 A2 19MC 01

9.3 Command lines to configure and monitor safekit cluster

safekit cluster config

[filepath .xml or .zip]

[lock | unlock]

Apply the new SafeKit cluster configuration with the

content of the file passed as argument, cluster.xml or

cluster.zip:

 cluster.xml

configure with new cluster.xml and generate new

cryptographic keys

 cluster.zip

configure with the new cluster.xml and

cryptographic keys stored into the zip file

When called with no argument, this command keeps the

current configuration but generates new cryptographic

keys.

Ex:

safekit cluster config /tmp/newcluster.xml

Use with great care: the new cluster

configuration and cryptographic key must

then be copied to all cluster nodes to

have the same cluster configuration on all

nodes.

If the command is called with the parameter lock,

future safekit cluster config commands will not be

granted until they are called with the unlock

parameter.

safekit cluster confcheck

filepath

Check the cluster configuration, with the content of the

xml file passed as argument, without applying it

 Command line interface

39 A2 19MC 01 145

safekit cluster confinfo

Return, for each active cluster node:

• the date of last cluster configuration,

• the digital signature of last cluster configuration

• the state: locked (1) or unlocked (0) status for the

cluster configuration

This command allows checking if all node of a cluster

have the same configuration.

Ex:

safekit cluster conf info

Node Signature Date Lock

rh6server7 6f1032b11a7b2 … 33e67c 2016-05-20T17:06:45 0

rh7server7 6f1032b11a4e0 … 33e67c 2016-05-20T17:06:45 0

The SafeKit cluster configuration must be

the same on all nodes of a cluster.

Asymmetric cluster configurations are not

supported.

safekit cluster deconfig
Remove the cluster configuration and the cryptographic

key.

safekit cluster state

Return the global SafeKit modules configuration state

For each installed module on each cluster node, this

commands list:

• the node name,

• module name,

• module mode (farm or mirror)

• internal module id number,

• date of last module configuration,

• digital signature of last configuration

This command list which modules are installed on

which nodes of the cluster. Signature and date of last

configuration on each node allow checking that a

module has the same configuration on all nodes, and if

not, which node has the most recent configuration.

safekit cluster genkey

Create cryptographic key for global SafeKit

communication (implemented in the safeadmin

process). The cluster configuration must be

deployed again (with safekit –G) for this

command to take effect.

safekit cluster delkey

Suppress cryptographic keys for global SafeKit

communication. The cluster configuration must

be applied again (with safekit -G) for this

command to take effect.

SafeKit User's Guide

146 39 A2 19MC 01

safekit –H “[http],*” -G

Redo a name resolution for all names specified in

cluster.xml and userconfig.xml of modules,

without stopping modules (when possible).

safekit –H <url>[,<url>] -

G

Distributes the local cluster configuration and

associated cryptographic key if it exists, to the

target nodes specified in the URL list.

Ex:

safekit –H

http://192.168.1.1:9010,http://192.168.1.

2:9010 -G

9.4 Command lines to control modules

The commands apply to the module named AM, passed as an argument with the -m

option.

safekit start –m AM Starts the module

safekit waitstart –m AM Waits for the end of the module start

safekit stop –m AM Stops the module

safekit waitstop –m AM Waits for the end of the module stop

safekit waitstate –m AM STOP

| ALONE | UP | PRIM | SECOND
Wait for the required stable state (red or green).

safekit restart –m AM

Executes only application stop and start scripts

For mirror modules, there is no failover

on the other server if the module is PRIM

safekit swap [nosync] –m AM

Mirror modules only

Swaps the roles of primary and secondary nodes.

Use nosync to swap without synchronizing the

replicated directories.

safekit stopstart –m AM

Unlike the safekit restart –m AM command, the

safekit stopstart –m AM command causes a

complete stop of the module followed by a start. If

the module was PRIM, there is a failover of the PRIM

module on the other server

Equivalent to safekit stop –m AM;
safekit start –m AM

 Command line interface

39 A2 19MC 01 147

safekit prim –m AM

Mirror modules only

Forces the module to start as primary. It fails if the

other server is already primary.

The main use case of this command is described in

section 5.3 page 97

safekit second [fullsync] –m

AM

Mirror modules only

Forces the module to start as secondary. It fails if

the other server is not primary.

Use fullsync to force the full synchronization of the

replicated directories.

safekit forcestop –m AM
Forces the module stop even if some resources are

frozen

safekit errd suspend –m AM

safekit errd resume –m AM

Suspends/resumes the error detection of module

processes defined in <errd> section of
userconfig.xml

Useful if you want to stop the application without

changing the module state.

The resource variable usersetting.errd reflects the

current setting.

safekit checker off –m AM

safekit checker on –m AM

Used to stop or start all checkers (interface, TCP, IP,

custom, etc ...)

Useful for maintenance operation, when man knows

that some checker will detect a problem because

some parts of the IT infrastructure will be stopped,

and don’t want that Safekit start a failover.

Notes:

✓ could be used only on a live module in a stable

state (ALONE, UP, PRIM, SECOND, WAIT)

✓ the resource variable usersetting.checker reflects

the current setting

✓ a side effect of this command is the execution of

the update command.

SafeKit User's Guide

148 39 A2 19MC 01

safekit failover off –m AM

safekit failover on –m AM

Used to dynamically set the failover attribute to on or

off (see section 13.2.3 page 237).

Notes:

✓ could be used only on a mirror live module in a

stable state (ALONE, PRIM, SECOND,WAIT).

✓ this command must be issued on all machines

belonging to the same cluster to not have

unexpected results.

✓ the resource variable usersetting.failover reflects

the current setting.

✓ a side effect of this command is the execution of

the update command.

9.5 Command lines to monitor modules

The commands apply to the module named AM, passed as an argument with the -m

option.

safekit level [–m AM] Indicates the version of SafeKit and the license

With the AM parameter, the "level" script of the

module is called, and its results displayed

safekit state Displays the status of all modules

safekit state –m AM

[–v | -lq]
Displays the status of the AM module

With the verbose option –v, status of all the module

resources are listed: see the usefulness of resources

in section 7.9 page 117

With the option –lq, the command returns status

(and exit code): STOP (0), WAIT (1), ALONE (2),
UP (2), PRIM (3), SECOND (4)

safekit log –m AM [-s nb]

[-A | -I] [-l en|fr]

Displays the last nb E(vent) messages of the AM

module log.

Use -I option for displaying also I(nformation)

messages, or -A for displaying all messages

(including debug ones).

Use -l option for choosing the language, en(glish) or

fr(ench).

Default: –s 300

 Command line interface

39 A2 19MC 01 149

safekit logview –m AM [-A |

-I] [-l en|fr]
View in real time the last E(vent) messages of the

AM module log.

Use -I option for displaying also I(nformation)

messages, or -A for displaying all messages

(including debug ones).

Use -l option for choosing the language, en(glish) or

fr(ench).

safekit logview –m AM –s 300

[-A | -I] [-l en|fr]
View in real time the AM module log messages

starting from the last 300 messages

safekit logsave –m AM [-l

en|fr] [-A] /tmp/f.txt
Save E(vent) messages of the AM module log in

/tmp/f.txt (absolute path mandatory).

Use -I option for saving also I(nformation)

messages, or -A for saving all messages (including

debug ones).

Use -l option for choosing the language, en(glish) or

fr(ench).

safekit printi|printe –m AM

"message"
Application start/stop scripts can write messages in

the module log with I or E level.

9.6 Command lines to configure modules

safekit config –

m AM

Apply changes made in SAFE/modules/AM: userconfig.xml,

start_prim/both or stop_prim/both (mirror/farm)

Makes each plug-in defined in userconfig.xml <errd>, <vip>,

<rfs>, <user>... considered in the new module configuration

This command could be run on a server in the stable states STOP,

ALONE or WAIT (red).

In STOP state all the configuration parameters could be modified.

Some configuration parameters can be changed while the module is

running in ALONE or WAIT (red) states. This feature is called dynamic

configuration. Parameters that could be dynamically changed are

reported into section 13 page 235 that describes all configuration

parameters.

safekit module

genkey –m AM

Generates cryptographic keys for the module instances network

exchanges encryption. Considered after the next configuration of

the module.

safekit module

delkey –m AM

Erase cryptographic keys associated with the module. After the

next configuration, module instances network exchanges will be

performed without encryption.

SafeKit User's Guide

150 39 A2 19MC 01

safekit

-H <url>[,<url>]

-E AM

Distributes the local configuration for the module AM and associated

cryptographic key if it exists, to the target nodes specified in the

URL list.

Ex:

safekit –H

http://192.168.1.1:9010,http://192.168.1.2:9010 –E mirror

safekit confinfo

–m AM

Display information on the active and current configuration of the

module AM.

 the active configuration is the last configuration successfully

applied. It is in SAFE/private/modules/AM

 the current configuration is the one located in

SAFE/modules/AM. It may be different from the active one

when it has been modified and not yet been applied

This command is useful for checking the configuration of the

module. It displays:

 the signature value and a last modification date (Unix

timestamp) for the active configuration

 the signature value and last modification date (Unix timestamp)

for the current configuration

When the signature values are different, it means that the

configurations are not identical and that you may have to apply the

current configuration.

You can run this command on all the cluster nodes that implement

the module to check that the configuration of the module is

identical on all nodes.

safekit

confcheck –m AM

Check the module configuration under SAFE/modules/AM without

applying

safekit module

install –m AM

[-M id] [-r]

SAFE/Application

_Modules/AM.safe

Installs the AM.safe module under the AM name

[-r] force reinstallation of the module

[-M id] forces the installation of the module with the id specified

as module id

safekit module

package –m AM

/…/newAM.safe

Packages the AM module in /…/newAM.safe (absolute path

mandatory)

Used by the console to create a backup in
SAFE/Application_Modules/backup/

safekit module

uninstall –m AM

Uninstalls the AM module. Deletes the module configuration

directory SAFE/modules/AM

safekit module

list
Lists the names of the installed modules

 Command line interface

39 A2 19MC 01 151

safekit module

listid
Lists the names and ids of the installed modules

safekit module

getports –m AM

(or –i id)

Lists the communication ports used by the module to communicate

between servers

9.7 Command lines for support

safekit snapshot –m AM

/tmp/snapshot_xx.zip

Saves the snapshot of the AM module in

/tmp/snapshot_xx.zip (absolute path mandatory)

A snapshot creates a dump and gathers under

SAFEVAR/snapshot/modules/AM the last 3 dumps and last

3 configurations to collect them in a .zip file

To analyse snapshots, see 7.16 page 123

To send snapshots to Evidian support, see 8 page 133

safekit dump –m AM

To solve a problem in real time on a server, make a dump

of the AM module

A dump creates a directory dump

dump_year_month_day_hour_mn_sec on the server side

under SAFEVAR/snapshot/modules/AM. The dump

directory contains the module log and status, as well as

information on the system state and SafeKit processes at

the time of the dump

safekit –r

"specialcommand"

Calls the special command in SAFEBIN with SafeKit

environment variables set.

SafeKit User's Guide

152 39 A2 19MC 01

safekit clean [all |

log | process |

resource] [-m AM]

Clean the logs, the resource file, and the main processes

of the module AM.

This command must be used with caution since

it deletes working files and kills processes.

 safekit clean log –m AM

Clean the logs (verbose and not verbose logs) of the

module. To be used when these logs are corrupted (e.g.:

errors in log view).

 safekit clean resource –m AM

Reinitialize the resource file of the module. To be used

when this file is corrupted (e.g.: errors in resources

display)

 safekit clean process –m AM

Kill the main processes (heart) of the module. To be used

when the stop and forcestop of the module did not

achieve to kill these processes.

 safekit clean all –m AM

Default value. Clean log, resource, and process.

39 A2 19MC 01 153

10. Advanced administration

 10.1 “SafeKit environment variables and directories” page 153

 10.2 “SafeKit processes and services” page 155

 10.3 “Firewall settings” page 156

 10.4 “Boot and shutdown setup in Windows” page 161

 10.5 “Securing module internal communications” page 162

 10.6 “Configuration of the SafeKit web service” page 167

 10.7 “Mail notification” page 171

 10.8 “SNMP agent” page 173

 10.9 “Commands log of the SafeKit server” page 175

10.1 SafeKit environment variables and directories

10.1.1 Global

Variable Description

SAFE

(given by safekit –p)
SafeKit installation directory: SAFE=/opt/safekit on

Linux and SAFE=C:\safekit on Windows if

SystemDrive=C:

The license is under SAFE/conf/license.txt

SAFEVAR

(given by safekit –p)
SafeKit working files directory:

SAFEVAR=C:\safekit\var on Windows and

SAFEVAR=/var/safekit on Linux

SAFEBIN

(given by safekit –p)
SafeKit binary installation directory:

C:\safekit\private\bin on Windows and

/opt/safekit/private/bin on Linux. Useful to

access SafeKit special commands (see 14.4 page 296)

SAFE/Application_Modules Installable .safe modules directory.

Once a module has been installed, the module is

located under SAFE/modules

SafeKit User's Guide

154 39 A2 19MC 01

10.1.2 Module

Variable Description

SAFEMODULE The name of the module. The safekit command no

longer needs the module name parameter (-m AM =

-m SAFEMODULE)

SAFE/modules/AM and

SAFEUSERBIN

Editing a module, named AM, and its scripts is made

inside directory SAFE/modules/AM. There are

userconfig.xml file and application start and stop

scripts start_prim, stop_prim for a mirror,

start_both, stop_both for a farm (online edition or

through the SafeKit console)

After a module configuration (safekit config –m AM

or web console/ Advanced Configuration /Installed

modules/ module/ Apply the configuration or web

console/ Configuration/ on the module/ Edit

the configuration), scripts are copied to the runtime

directory SAFE/private/modules/AM/bin: this is the

value of SAFEUSERBIN (do not modify scripts at this

place)

SAFEVAR/modules/AM and

SAFEUSERVAR

Module, named A, working files directory

(SAFEUSERVAR=SAFEVAR/modules/AM)

Output messages of application scripts are in

SAFEVAR/modules/AM/userlog.ulog. To check if

there are errors during start or stop of the application.

Be careful, sometimes the userlog is disabled because

it is too large with <user logging="none"> in

userconfig.xml of the module

Since SafeKit 7.4.0.19, the extension

for the application log file has changed.

The file name is now userlog.ulog and

it was userlog.AM.

SAFEVAR/snapshot/modules/AM

Directory of dumps and configurations put in a

snapshot of the module named AM. See section 9.7

page 151 that describes command lines for support.

 Advanced administration

39 A2 19MC 01 155

The module tree (packaged into a .safe or installed into SAFE/modules/AM) is the

following:

AM Application module name

 conf

 userconfig.xml

User XML configuration file

 userconfig.xml.template

Internal use only

 modulekey.p12

Optional. Internal use only (encryption of

the module internal communications)

 modulekey.dat

Optional. Internal use only (encryption of

the module internal communications)

 bin

 prestart

User script executed on module start

 start_prim or start_both

User script to start the application in

mirror or farm module

 stop_prim or stop_both

User script to stop the application in

mirror or farm module

 poststop

User script executed on module stop

 web
 index.html File for the SafeKit web console

 manifest.xml

Internal use only

index.html is an HTML page with JavaScript that is displayed in the web

console/Configuration wizard (described in 3.3.2.2 page 47). You can modify this page to

customize the Edit the Configuration form in the configuration wizard. When index.html

is not present (in previous versions modules for instance), the web console instead

proposes to edit the userconfig.xml file.

10.2 SafeKit processes and services

SafeKit Services Processes per module

safeadmin (safeadmin

process): main and

mandatory service

heart: manages the

recovery procedures

vipd: synchronizes a farm of

servers

SafeKit User's Guide

156 39 A2 19MC 01

SafeKit Services Processes per module

safewebserver (httpd

process): service for the

console, for <module>

checkers and the

distributed commands

errd: manages detection

of process death

nfsbox, nfsadmin,

reintegre: file replication and

reintegration

safeagent (safeagent

process): SafeKit SNMP

agent (optional)

checkers (ipcheck,

intfcheck, …)

See 10.3.3.1 page 158 and 10.3.3.2 page 159 for full details on SafeKit processes name

and ports used.

10.3 Firewall settings

If a firewall is active on the SafeKit server, you must add rules to allow network traffic:

 between servers for internal communication (global runtime and module specific)

 between servers and workstations running the SafeKit console

10.3.1 Firewall settings in Linux

If you opted-in for automatic local firewall configuration during SafeKit installation, you

do not have to apply the following procedures, except for configuring the safeagent

service for SafeKit SNMP agent is enabled.

If you opted-out for automatic local firewall configuration, you must configure the firewall

manually or you may use the firewallcfg command (in SAFEBIN). It inserts (or

remove) the firewall rules required by the SafeKit core processes (safeadmin and

safewebserver services) and modules processes to communicate with their peers in the

cluster.

Administrators should review the script for conflicts with local policy before applying it.

firewallcfg add

firewallcfg del

Add (or delete) the firewalld or iptable firewall rules

for the SafeKit safeadmin and safewebserver

services

SAFEBIN=/opt/safekit/private/bin

 SAFEBIN/firewallcfg add

add firewall rules for safeadmin and
safewebserver

 SAFEBIN/firewallcfg del

delete firewall rules for safeadmin and
safewebserver

 Advanced administration

39 A2 19MC 01 157

firewallcfg add AM

firewallcfg del AM

Add (or delete) the firewalld or iptable firewall rules

for the SafeKit modules

SAFEBIN=/opt/safekit/private/bin

 SAFEBIN/firewallcfg add AM

add firewall rules for the module named AM

This command must be applied after the

first configuration of the module, and on

next configurations if used ports have

changed (check it with the command

safekit module getports -m AM).

 SAFEBIN/firewallcfg del AM

delete firewall rules for the module named AM

firewallcfg add safeagent

firewallcfg del safeagent

Add (or delete) the firewalld or iptable firewall rules

for the SafeKit safeagent service

SAFEBIN=/opt/safekit/private/bin

 SAFEBIN/firewallcfg add safeagent

add firewall rules for safeagent

This command must be applied when

you enable the SafeKit SNMP agent.

 SAFEBIN/firewallcfg del safeagent

delete firewall rules for safeagent

10.3.2 Firewall settings in Windows

When using the operating system firewall (Microsoft firewall), you may use the

firewallcfg command (in SAFEBIN). It inserts (or remove) the firewall rules required by

the processes of SafeKit services (safeadmin, safewebserver, safeagent,

safeacaserv) and modules processes to communicate with their peers in the cluster.

Administrators should review the script for conflicts with local policy before applying it.

firewallcfg add

firewallcfg del

Add (or delete) the Microsoft firewall rules

SAFEBIN=C:\safekit\private\bin (if %SYSTEMDRIVE%=C:)

cd SAFEBIN

firewallcfg add

add firewall rules for SafeKit core and modules processes

 cd SAFEBIN

firewallcfg del

delete firewall rules for SafeKit core and modules processes

SafeKit User's Guide

158 39 A2 19MC 01

10.3.3 Other firewalls

If you use another firewall or want to check rules against local policy, the following lists

processes and ports used by SafeKit services and modules that may be useful to

configure the firewall.

10.3.3.1 List of processes

10.3.3.1.1 Processes performing local-only network exchanges

 Processes for a mirror module

✓ errd: manages detection of process death

✓ nfsadmin, nfscheck: manage the file replication

 Processes for a farm module

✓ errd: manages detection of process death

✓ heart: manages the recovery procedures

10.3.3.1.2 Processes performing external network exchanges

 Processes common to all the SafeKit servers, one process by server, started at boot:

✓ safeadmin service (safeadmin process)

main and mandatory administration service

✓ safewebserver service (httpd process)

web service for the console, for <module> checkers and the distributed

commands

✓ safecaserv (httpd process)

web service for securing the web console with the SafeKit PKI (optional)

✓ safeagent service (safeagent process)

SafeKit SNMP v2 agent (optional)

 Processes for a mirror module (depending on its configuration):

✓ heart: manages the recovery procedures

✓ arpreroute: manages arp requests (sends ARP packet)

✓ nfsbox, reintegre: manage the file replication and reintegration

✓ splitbraincheck: manage the splitbrain detection (sends ICMP ping packets)

 Processes for a farm module (depending on its configuration):

✓ vipd: synchronizes a farm of servers

✓ arpreroute: manages arp requests (sends ARP packet)

 Advanced administration

39 A2 19MC 01 159

 Processes for a mirror or a farm module depending on checkers configuration:

✓ intfcheck: for checking interface (interface checker configuration

automatically generated when <interface check=on>)

✓ pingcheck: for pinging an address (<ping> configuration)

✓ ipcheck: for checking a locally defined ip address (virtual ip checker

automatically generated when <virtual_addr check=on>)

✓ modulecheck: for checking a SafeKit module (<module> configuration)

✓ tcpcheck: for checking a TCP connection (<tcp> configuration)

10.3.3.2 List of ports

The following list ports used by SafeKit services and modules.

10.3.3.2.1 Ports used by services

 safeadmin

By default, remote access on UDP port 4800 (to communicate with safeadmin

instances on other SafeKit servers) and local access on UDP port 6259.

For changing the remote port value, see section 12.1.3 page 229.

The local port value is defined by the attribute mapper into the global SafeKit

configuration file safeini.xml (in Linux: /etc/safeini.xml; in

Windows: c:\Windows\safeini.xml).

Before upgrading SafeKit, save this file if you have

modified it because its content is not preserved.

 safewebserver

Local and remote TCP access, by default, on port 9010 for HTTP or port 9453 for

HTTPS. For the ports value definition, see section 10.6 page 167.

This service is accessed locally and from remote SafeKit servers and remote

workstation running the SafeKit console.

 safecaserv (optional)

Local and remote access on TCP port 9001 by default. For the port value definition,

see section 11.6.5 page 225.

This service is accessed locally, and from remote SafeKit servers and remote

workstation running the HTTPS configuration wizard with the SafeKit PKI.

 safeagent (optional)

Local and remote access on UDP port 3600 by default. For the port value definition,

see section 10.8 page 173.

SafeKit User's Guide

160 39 A2 19MC 01

10.3.3.2.2 Ports used by modules

When a module is configured on a SafeKit server, you can run the command safekit

module getports -m AM to list the external ports used by the module AM. For firewall

configuration, you must configure all SafeKit servers to enable communications targeted

at these ports.

The ports values for one module are automatically computed depending on its module id.

Run the command safekit module listid to list all the installed modules with their

name and id.

You can run the command safekit module getports -i ID to list the ports that could

be used by a module that got the id value ID (this command can be run even if the

module is not yet installed, but it will return a superset of the really used port by the

module).

The following gives rules for computing ports values depending on the module id. When

checkers are configured for the module, you may also need to change the firewall

configuration according to the checkers configuration. You must enable all

communications on localhost between SafeKit processes.

 For a mirror module:

✓ Port used by heart

 UDP port used for sending heartbeats between SafeKit servers

 port=8888 +(id-1)

✓ Ports used by rfs (file replication)

 TCP port used for replications requests between SafeKit servers

 safenfs_port=5600 +(id-1)x4

Example for a mirror module with id 1

safekit module getports -m mirror

List of the ports used by SafeKit

Process Ports

safeadmin

 port UDP 4800

webconsole

 port TCP 9010

heart

 port UDP 8888

rfs

 safenfs_port TCP 5600

 For a farm module

✓ Port used by farm

 UDP port used for communications between all SafeKit nodes

 port 4803 + (id-1)x3

 Advanced administration

39 A2 19MC 01 161

Example for a farm module with id 2

safekit module getports -m farm

List of the ports used by SafeKit

Process Ports

safeadmin

 port UDP 4800

webconsole

 port TCP 9010

farm

 port UDP 4806

 For configured checkers

✓ Ping checker for mirror or farm module

Change ICMP settings to allow ping at destination to the address defined into

the configuration.

✓ TCP checker for mirror or farm module

Allow TCP connections at destination to the address defined into the <tcp>

configuration if this address is not local.

✓ Module checker

Allow TCP connections at destination to 9010 port of the node running the

module that is checked.

✓ Splitbrain checker

Change ICMP settings to allow ping at destination to the witness defined into

the <splitbrain> configuration.

10.4 Boot and shutdown setup in Windows

safeadmin service is configured for automatically starting on boot and stopping on

shutdown. In turn, this service starts modules configured for starting at boot and

shutdown all modules.

On some Windows platforms, the safeadmin boot start fails because the network

configuration is not ready, and the modules shutdown does not have time to complete

since the timeout for services shutdown is too short. If you encounter such problems,

apply one of the following procedures.

When using the SNMP agent, adapt the following procedures to set the

manual start of the safeagent service and include its start/stop into SafeKit

start-up (safekitbootstart.cmd) and shutdown (safekitshutdown.cmd)

scripts.

10.4.1 Automatic procedure

You can run the script as follow:

1. open a PowerShell window as administrator

2. cd SAFE\private\bin

SafeKit User's Guide

162 39 A2 19MC 01

3. run addStartupShutdown.cmd

This script sets the manual start for safeadmin service and adds default SafeKit start-up

(safekitbootstart.cmd) and shutdown (safekitshutdown.cmd) scripts as part of the

computer group policy start-up/shutdown scripts. If the script fails, apply the manual

procedure below.

10.4.2 Manual procedure

You must apply the following procedure that uses the Group Policy Object Editor.

1. set manual start for safeadmin service

2. start the MMC console with the mmc command line

3. File - Add/Remove Snap-in Add - "Group Policy Object Editor" – OK

4. under "Console Root"/"Local Computer Policy"/"Computer Configuration"/"Windows

Settings"/"Scripts (Start-up/Shutdown)", double click on "Start-up". Click on Add

then set for "Script Name:" c:\safekit\private\bin\safekitbootstart.cmd. This

script launches the safeadmin service.

5. under "Console Root"/"Local Computer Policy"/"Computer Configuration"/"Windows

Settings"/"Scripts (Start-up/Shutdown)", double click on "Shutdown". Click on Add

then set for "Script Name:" c:\safekit\private\bin\safekitshutdown.cmd. This

script shutdowns all running modules.

10.5 Securing module internal communications

You can secure communications for the module between cluster nodes by creating

cryptographic keys associated with the module. By default, these keys are generated by

SafeKit with a “private” certification authority (SafeKit PKI). In SafeKit <= 7.4.0.31, the

generated key has a validity period of 1 year. See section 10.5.3.1 page 165 for solutions

when the key expires.

Since SafeKit 7.4.0.16, you can also provide your own certificates generated with your

trusted certification authority (enterprise PKI or commercial PKI). See section 10.5.3.2

page 166 for details.

Since SafeKit 7.4.0.32, the module can be reconfigured with new keys while it is in

ALONE state (dynamic update).

When encryption is not properly configured (e.g.: not the same key on all

cluster nodes of the module), the module internal communications between

nodes are rejected. In this case, the module configuration is not identical on

all nodes. You must apply again the configuration on all nodes.

You can check the configuration by running on each node the command

safekit confinfo –m AM where AM is the module name (see section 9.6

page 149). This information is also displayed by the SafeKit web console

before editing the configuration of the module and before running a global

start.

 Advanced administration

39 A2 19MC 01 163

When encryption is not properly configured (e.g.: not the same key on all

cluster nodes of the module), the module internal communications between

nodes are rejected. In this case, the module configuration is not identical on

all nodes. You must apply again the configuration on all nodes.

You can check the configuration by running on each node the command

safekit confinfo –m AM where AM is the module name (see section 9.6

page 149). This information is also displayed by the SafeKit web console

before editing the configuration of the module and before running a global

start.

The encryption resource reflects the current communication mode of the

module: “on”/”off” when encryption is active/not active. To see the

resources state, display web console/ Control/Select the node/Resources

tab.

Since SafeKit 7.5, the resource name is usersetting.encryption.

SafeKit User's Guide

164 39 A2 19MC 01

10.5.1 Configuration with the SafeKit Web console

When configuring the module with the SafeKit web console (see section 3.3 page 41):

 In Configuration wizard

 Edit the configuration tab

 Fill in the form

 (1) Check the box

Generate Keys for

creating cryptographic

key

or

Check the box Delete

Keys for removing

cryptographic key

 (2) click on the Apply

button to save changes

and go to next step for

applying it on all nodes

of the module

 Advanced administration

39 A2 19MC 01 165

10.5.2 Configuration with the Command Line Interface

The commands line equivalent for configuring a module, named AM, with cryptographic

key are:

1. Stop the AM module on all nodes

2. On one node, log as administrator/root and open a command shell window

3. Run safekit module genkey –m AM

4. Run safekit –H "server1,server2" -E AM

where server1 and server2 are the nodes that implement the module

The commands line equivalent for re-configuring a module without cryptographic key

are:

1. Stop the AM module on all nodes

2. On one node, log as administrator/root and open a command shell window

3. Run safekit module delkey –m AM

4. Run safekit –H "server1,server2" -E AM

where server1 and server2 are the nodes that implement the module

For more details on commands, refer to section 9.6 page 149.

10.5.3 Advanced configuration

10.5.3.1 Advanced configuration with the SafeKit PKI

In SafeKit <= 7.4.0.31, the key for encrypting the module communication has a validity

period of 1 year. When it expires in a mirror module with file replication, the secondary

fails to reintegrate. You must re-configure the module with a new key, as explained in

SK-0084, for reverting to normal behavior. In SafeKit > 7.4.0.31, the validity period has

been set to 20 years.

If you cannot upgrade SafeKit, you can generate new keys with a longer validity period.

For this apply the following procedure:

1. Stop the AM module on all nodes

2. On one node, log as administrator/root and open a command shell window

3. Run safekit module genkey –m AM

4. Delete the file SAFE/modules/AM/conf/modulekey.p12

5. Change to the directory SAFE/web/bin

6. Run ./openssl req -config ../conf/ssl.conf -subj
"/O=SafeKiModule/CN=mirror" -new -x509 -sha256 -nodes -days 3650 -newkey

rsa:2048 -keyout pkey.key -out cert.crt

Set the -days value to the validity period you want

https://support.evidian.com/solutions/downloads/safekit/version_7.5/documentation/safekitknowledgebase.htm#SK-0084

SafeKit User's Guide

166 39 A2 19MC 01

7. Run ./openssl pkcs12 -export -inkey ./pkey.key -in ./cert.crt -name
"Module certificate" -out modulekey.p12

This command requires to fill a password. Contact Evidian support to get the correct

value for the password

8. Delete the files pkey.key and cert.crt

9. Move the file modulekey.p12 into SAFE/modules/AM/conf

10. Run safekit –H "server1,server2" -E AM

where server1 and server2 are the nodes that implement the module

The module is configured, on the 2 nodes, with the new key and ready to start.

10.5.3.2 Advanced configuration with your PKI

Since SafeKit 7.4.0.16, you can provide your own key generated with your trusted

certification authority (enterprise PKI or commercial PKI). For this apply the following

procedure:

1. Stop the AM module on all nodes

2. On one node, log as administrator/root and open a command shell window

3. Run safekit module genkey –m AM

4. Delete the file SAFE/modules/AM/conf/modulekey.p12

5. Append the X509 certificate in PEM format, for your certification authority (certificate

of the CA or certificate bundle of all the certificate authorities) to the file
SAFE/web/conf/cacert.crt

6. Change to the directory SAFE/web/bin

7. Generate your certificate with your PKI with the subject set to
"/O=SafeKiModule/CN=mirror"

8. Copy the generated files pkey.key and cert.crt into the directory SAFE/web/bin

9. Run ./openssl pkcs12 -export -inkey ./pkey.key -in ./cert.crt -name
"Module certificate" -out modulekey.p12

This command requires to fill a password. Contact Evidian support to get the correct

value for the password

10. Delete the files pkey.key and cert.crt

11. Move the file modulekey.p12 into SAFE/modules/AM/conf

12. Run safekit –H "server1,server2" -E AM

where server1 and server2 are the nodes that implement the module

The module is configured, on the 2 nodes, with the new key and ready to start.

 Advanced administration

39 A2 19MC 01 167

10.6 Configuration of the SafeKit web service

SafeKit comes with a web service, safewebserver, which runs on each SafeKit server. It

is a standard Apache web service that is mandatory for running:

 the web console (see section 3 page 35)

 the distributed command line interface (see 9.1 page 141)

 the <module> checkers (see 13.16 page 285)

safewebserver starts automatically at the end of SafeKit package install and on server

reboot. If you do not need the SafeKit web service and want to remove the automatic

boot start, refer to section 9.2 page 142.

Since SafeKit 7.5, the default configuration is HTTP with file-based authentication,

initialized with a single admin user that got the Admin role. If you want to change it, refer

to section 11 page 177.

10.6.1 Configuration files

The configuration of an instance of safewebserver on a SafeKit server is contained in the

SAFE/web/conf directory. It consists in standard Apache configuration files (see

http://httpd.apache.org). The configuration is split into many files that are included or

not depending on desired settings.

After changes, you have to restart the service with the command: safekit

webserver restart (see section 9.2 page 142).

If necessary, you should only modify the main configuration file httpd.conf to suit your

needs. Comment character # disables the definition. The file contains the definition of:

Connection port definition:

 HTTP port

httpadminport (9010)

#httpcontrolport (9010)

#httpmonitorport (9010)

Admin role by default. Depending on the desired role, uncomment the

corresponding port and comment the others:

✓ httpadminport for Admin role

✓ httpcontrolport for Control role

✓ httpmonitorport for Monitor role

When uncommenting httpcontrolport or httpmonitorport, user

authentication must be disabled (see below).

 HTTPS port

httpsport (9453)

http://httpd.apache.org/

SafeKit User's Guide

168 39 A2 19MC 01

User authentication definition:

 File-based authentication

Define usefile

Enabled by default. Comment to disable.

✓ when using httpcontrolport or httpmonitorport, it must be disabled

✓ when enabled, httpadminport must be enabled and useldap must be

disabled

 LDAP/AD authentication

Define useldap

…

Disabled by default. Uncomment to enable.

✓ when using httpcontrolport or httpmonitorport, it must be disabled

✓ when enabled, httpadminport must be enabled and usefile must be

disabled

Apache logging definition:

It is disabled by default.

#Define Loglevel info

#Define accesslog

Uncomment these lines to enable the logging for debug purposes. Logging files

httpd.log and access.log are in SAFEVAR.

The other configuration files are listed below. Modifying one of them may cause problems

when upgrading SafeKit.

Global configuration httpd_main.conf

HTTP configuration httpd.webconsole.conf

HTTPS configuration and client

certificate user authentication

httpd.webconsolefileauth.conf

 using sslgroup.conf files into SAFE/web/conf

Form authentication

configuration

httpd.webconsoleformauth.conf

 for HTTP or HTTPS

File-based authentication

configuration

httpd.webconsolefileauth.conf

 for HTTP or HTTPS

 Advanced administration

39 A2 19MC 01 169

 using user.conf and group.conf files into
SAFE/web/conf

LDAP/AD authentication

configuration

httpd.webconsoleldap.conf

 for HTTP or HTTPS

 using a LDAP/AD server

The HTTP and HTTPS configurations cannot be active simultaneously.

Do not edit .default files in SAFE/web/conf since they are backups of delivered

configuration files.

10.6.2 Connection ports configuration

By default, connect the web console with the URL http://servername:9010. The SafeKit

web server will redirect to the appropriate page according to your security settings.

If you need to change the default value:

1. Edit SAFE/web/conf/httpd.conf and change the value of httpadminport,

httpcontrolport, httpmonitorport or httpsport variables.

2. Restart the service using the command safekit webserver restart.

The default value 9010(HTTP)/9453(HTTPS) is also used by other SafeKit components.

Therefore, if the default value is changed, the configuration for these components must

also be changed, as follows:

 in the global SafeKit configuration file safeini.xml, for the distributed commands:

1. Edit the file safeini.xml (in Linux: /etc/safeini.xml; in Windows:

c:\Windows\safeini.xml)

2. Remove the strings <-- and --> that comment the SAFESRVPORT definition

3. Replace the value of SAFESRVPORT by the new value that you have defined in
httpd.conf

Before upgrading SafeKit, save this file if you have

modified it because its content is not preserved.

 in the configuration of modules that define a <module> checker:

1. Edit the module configuration file userconfig.xml

2. Add the port attribute and assign it to the new port value

<check>

 <module name="mirror">

 <to addr="192.168.1.31" port="9010"/>

 </module>

 </check>

SafeKit User's Guide

170 39 A2 19MC 01

3. Apply the new configuration of the module

10.6.3 HTTP configuration

The default configuration is for HTTP.

The default configuration is also set with file-based authentication, initialized with a

single admin user that got the Admin role. This one can be extended for other users or

roles ; or replaced by another configuration. For a detailed description, see section 11

page 177.

10.6.4 HTTPS configuration

The HTTPS configuration requires the installation of certificates and the definition of user

authentication as described in section 11 page 177. Once done, HTTPS configuration can

be enabled:

1. copy SAFE/web/conf/httpd.webconsolessl.conf into the SAFE/web/conf/ssl

directory

2. restart the service using the command safekit webserver restart

Skip this procedure if you use the HTTPS configuration wizard since it applies it

automatically.

10.6.5 HTTPS <-> HTTP configuration

To re-enable the HTTP configuration if it has been changed to HTTPS:

1. remove the file SAFE/web/conf/ssl/httpd.webconsolessl.conf

2. restart the service using the command safekit webserver restart.

All the files necessary for the HTTPS configuration are preserved. It is therefore possible

to revert to the HTTPS configuration if necessary:

1. copy SAFE/web/conf/httpd.webconsolessl.conf into the SAFE/web/conf/ssl

directory

2. restart the service using the command safekit webserver restart

 Advanced administration

39 A2 19MC 01 171

10.7 Mail notification

For mail notification, you have first to choose a command line program to send mail. For

Windows, you can download windows binary from the mailsend download area. For

Linux, you can use the mail command instead of mailsend.

Mail notification is implemented thanks to user scripts of the module. These scripts can

be edited with the SafeKit console or on the server side. Each time you modify one of

these scripts, you must re-apply the module configuration on all nodes (via the SafeKit

console or the command).

10.7.1 Mail notification on the start and the stop of the module

The following lines, inserted into at the end of the prestart script of a module (named

AM), send an e-mail with the name of the module and server on which the module is

started:

 In Windows: c:\safekit\modules\AM\bin\prestart.cmd
if [%3] NEQ [start] goto nostart

rem send mail only on start (not on stopstart or stopwait)

FOR /F "usebackq" %%i IN (`hostname`) DO SET HOSTNAME=%%i

mailsend.exe -d mydomain.com -smtp smtp.mydomain.com

–t admin@mydomain.com -f SafeKit -sub "Start module %SAFEMODULE% on %HOSTNAME%" -

M "Running prestart" +cc +bc

:nostart

 In Linux: /opt/safekit/modules/AM/bin/prestart
if ["$3" = "start"]; then

 # send mail only on start (not on stopstart or stopwait)

 echo "Running prestart" | mail -s " Start module $SAFEMODULE on `hostname`"

admin@mydomain.com

fi

When the module is stopping, it can be notified using the poststop script. This one is not

delivered by default and can be created as follow (for the module named AM):

 In Windows: c:\safekit\modules\AM\bin\poststop.cmd
@echo off

rem Script called on module stop, stopstart, stopwait

rem For logging into module log use:

rem "%SAFE%\safekit" printi | printe "message"

rem stdout goes into Application log

echo "Running poststop %*"

rem send an email only on stop (not on stopstart or stopwait)

if [%3] NEQ [stop] goto nostop

FOR /F "usebackq" %%i IN (`hostname`) DO SET HOSTNAME=%%i

mailsend -d mydomain.com -smtp smtp.mydomain.com

–t admin@mydomain.com -f SafeKit -sub "Stop module %SAFEMODULE% on %HOSTNAME%" -M

"Running poststop" +cc +bc

:nostop

 In Linux: /opt/safekit/modules/AM/bin/poststop
#!/bin/sh

Script called on module stop, stopstart, stopwait

https://github.com/muquit/mailsend/#download-sourcebinary
mailto:admin@mydomain.com

SafeKit User's Guide

172 39 A2 19MC 01

For logging into SafeKit log use:

$SAFE/safekit printi | printe "message"

stdout goes into Application log

echo "Running poststop $*"

if ["$3" = "stop"]; then

 # send mail only on stop (not on stopstart or stopwait)

 echo "Running poststop" | mail -s " Stop module $SAFEMODULE on `hostname`"

admin@mydomain.com

fi

10.7.2 Mail notification on the failover of the module

The user script transition can be used to send an e-mail on main local state transitions

of the module running on the local server. For instance, it may be useful to know when

the mirror module is going ALONE (on failover for instance). The script transition is not

delivered by default and can be created as follow. Replace AM by the module name and

<mail …> by the command for sending e-mail and its arguments.

 In Windows: c:\safekit\modules\AM\bin\transition.cmd

@echo off

rem Script called on module transitions

rem For logging into module log use:

rem "%SAFE%\safekit" printi | printe "message"

rem stdout goes into Application log

echo "Running transition %*"

rem send an email when transiting from WAIT to ALONE, SECOND to ALONE, PRIM to

ALONE

IF [%1] EQU [WAIT] if [%2] EQU [ALONE] <mail …>

IF [%1] EQU [SECOND] if [%2] EQU [ALONE] <mail …>

IF [%1] EQU [PRIM] if [%2] EQU [ALONE] <mail …>

 In Linux: /opt/safekit/modules/AM/bin/transition

#!/bin/sh

Script called on module transitions

For logging into SafeKit log use:

$SAFE/safekit printi | printe "message"

stdout goes into Application log

echo "Running transition $*"

send an email when transiting from WAIT to ALONE, SECOND to ALONE, PRIM to

ALONE

if ["$1" = "WAIT" -a "$2" = "ALONE"] ; then <mail …>; fi

if ["$1" = "SECOND" -a "$2" = "ALONE"] ; then <mail …> ; fi

if ["$1" = "PRIM" -a "$2" = "ALONE"] ; then <mail …> ; fi

 Advanced administration

39 A2 19MC 01 173

10.8 SNMP agent

For using the SafeKit SNMP agent safeagent, you must:

1. configure it to start on boot, with the command

safekit boot [snmpon |

snmpoff | snmpstatus]

Controls the automatic start at boot of the

safeagent service ("on" or "off"; by default, "off")

2. add the corresponding firewall rule

✓ In Linux, when using the default safeagent configuration (port 3600) and

operating system firewall, you can use the command:

SAFEBIN/firewallcfg add safeagent

✓ In Windows, when using the operating system firewall, the firewall has already

been configured for safeagent if you have applied the command:

SAFEBIN/firewallcfg add

3. start it with the command

safekit safeagent [start |

stop | restart | check]

Controls start/stop of the safeagent service that

implements the SafeKit SNMP agent.

10.8.1 The SNMP agent configuration

The configuration of the safeagent is defined in the self-documented

SAFE/snmp/conf/snmpd.conf file. It is a standard net-snmp configuration file as

described in http://net-snmp.sourceforge.net. By default, the service is listening on UDP

agentaddress port 3600 and accepts read request from the public community and write

requests from the private community. Read requests are used to get module status and

write requests to run actions on the module.

SNMP traps can be sent by SafeKit agent when messages are logged with the I or E

levels. The IP address for sending SNMP traps must be set with the line trapsink

SNMPManagerIPaddress in snmpd.conf.

You can change the default configuration according to your needs. When you modify

snmpd.conf, you must manually change the firewall rule and restart the service to load

the new configuration with: safekit safeagent restart

10.8.2 The SafeKit MIB

The SafeKit MIB is delivered in SAFE/snmp/mib/safekit.mib (read this file to have the

detail of the MIB). Note that the MIB includes a definition of the trap sent by SafeKit.

The SafeKit MIB is accessed with the following identifier (OID, prefix of SafeKit SNMP

variables): = enterprises.bull.safe.safekit (1.3.6.1.4.1.107.175.10).

The SafeKit MIB defines:

 The module table: skModuleTable

SafeKit User's Guide

174 39 A2 19MC 01

The index on the module table is the ID of the application module as returned by the

command safekit module listid.

Through the MIB, you can read and display the status of an application module on a

server (STOP, WAIT, ALONE, UP, PRIM, SECOND) or you can take an action on the

module (start, stop, restart, swap, stopstart, prim, second).

For example, the status of the module with ID 1 is read by an SNMP get to the variable:
enterprises.bull.safe.safekit.skModuleTable.skModuleEntry.skModuleCurrentSt

ate.1 = stop (0)

Use the snmp walk command to check all MIB entries.

 The resource table: skResourceTable

Each element defines a resource as for instance the one corresponding to the network

interface checker "intf.192.168.0.0" and its status (unknown, init, up, down).

Example: SNMP get request to
enterprises.bull.safe.safekit.skResourceTable.skResourceEntry.skResourceNam

e.1.2 means name of resource 2 in application module 1.

 The trap:

Traps are sent with the OID enterprises.bull.safe.safekit.skTrapLogMesg. A trap

contains the SafeKit last log message (I and E levels) for each module.

 Advanced administration

39 A2 19MC 01 175

10.9 Commands log of the SafeKit server

There is a log of the safekit commands ran on the server. It allows auditing the actions

performed on the server to help support for instance. The log records all the safekit

commands that are run and that modify the system such as a module install and

configuration, a module start/stop, the safekit webserver start/stop, …

Since SafeKit 7.5, this log is stored in the SAFEVAR/log.db file in SQLite3

format. In earlier versions, it was stored in the SAFEVAR/commandlog text

file.

For viewing the commands log:

 run the command safekit cmdlog

or

 click on the commands log tab into the web console

Below is the raw extract of this log:

| 2021-07-27 14:37:33.205122 | safekit | mirror | 6883 | START | config -m

mirror

| 2021-07-27 14:37:33.400513 | cluster | mirror | 0 | I | update

cluster state

| 2021-07-27 14:37:33.405597 | cluster | mirror | 0 | I | module

state change on node centos7-test3

| 2021-07-27 14:37:34.193280 | | | 6883 | END | 0

| 2021-07-27 14:37:34.718292 | cluster | mirror | 0 | I | update

cluster state

| 2021-07-27 14:37:34.722080 | cluster | mirror | 0 | I | module

state change on node centos7-test4

| 2021-07-27 14:37:37.510971 | | | 6871 | END | 0

| 2021-07-27 14:38:05.092924 | safekit | mirror | 7017 | START | prim -m

mirror -u web@10.0.0.103

| 2021-07-27 14:38:05.109368 | | | 7017 | END | 0

Each field has the following meaning:

✓ The 1st field in the log entry is the date and time of the message

✓ The next one is the type of the action

✓ The next one is the module name when the action is not global

✓ The next one is the pid of the process that runs the command. It is used as the

identifier of the log entry

✓ The next ones are START when the command starts and the command’s arguments;

or END when the command has finished with the return value.

SafeKit User's Guide

176 39 A2 19MC 01

39 A2 19MC 01 177

11. Securing the SafeKit web service

 11.1 “Overview” page 177

 11.2 “HTTP setup” page 179

 11.3 “HTTPS setup” page 182

 11.4 “User authentication setup” page 192

 11.5 “Setup example for HTTPS and personal certificate authentication” page 213

 11.6 “SafeKit PKI advanced configuration” page 218

11.1 Overview

The SafeKit web service is mainly used by:

 the web console (see section 3 page 35)

 the distributed command line interface (see 9.1 page 141)

SafeKit provides different setups for this web service to enhance the security of the

SafeKit web console and distributed commands.

Protocol Authentication Role management

✓ HTTP

✓ HTTPS

✓ None

✓ File based

✓ LDAP/AD

✓ Client certificate

✓ Admin

✓ Control

✓ Monitor

The most secure setups are based on HTTPS and user authentication.

SafeKit provides a configuration wizard to setup HTTPS, and optionally client certificates,

with a “private” certification authority (the SafeKit PKI). This allows SafeKit to be quickly

secured without the need for an external PKI (enterprise PKI or commercial PKI) that

provides trusted certification authority.

SafeKit User's Guide

178 39 A2 19MC 01

SafeKit offers also optional role management based on 3 roles:

Admin role

This role grants all administrative rights by allowing access to the

tabs:

 Configuration, Control, Monitoring and Advanced

Configuration

Control role

This role grants control and monitoring rights by allowing access to

the tabs:

 Control et Monitoring

Monitor role

This role only grants monitoring rights by allowing access to the tab:

 Monitoring

11.1.1 Default setup

Since SafeKit 7.5, the default setup is the following:

Setup Protocol
Authentication

Role management

Default ✓ HTTP

✓ File-based authentication

(username/password stored in an

Apache file)

✓ Initialization with a single user

named admin with the Admin role

To configure, see 11.2.1 page 179

11.1.2 Predefined setups

The predefined setups are as follows:

Setup Protocol
Authentication

Role management

Unsecure ✓ HTTP

✓ No authentication

✓ Same role for all users

To configure, see 11.2.2 page 181

File-based

✓ HTTP

✓ HTTPS

✓ username/password stored in an

Apache file

✓ Optional role management stored in

an Apache file

 Securing the SafeKit web service

39 A2 19MC 01 179

To configure HTTPS with:

 the SafeKit PKI, see 11.3.1

page 183

 your PKI, see 11.3.2 page 188

To configure, see 11.4.1 page 192

LDAP/AD

✓ HTTP

✓ HTTPS

To configure HTTPS with:

 the SafeKit PKI, see 11.3.1

page 183

 your PKI, see 11.3.2 page 188

✓ LDAP/AD authentication

✓ Optional role management

To configure, see 11.4.2 page 195

Client

certificate

✓ HTTPS

To configure HTTPS with:

 the SafeKit PKI, see 11.3.1

page 183

 your PKI, see 11.3.2 page 188

✓ Client certificate authentication

✓ Integrated role management

To configure

 through SafeKit PKI, see 11.4.3

page 197

 through your PKI, see 11.4.4 page

204

11.2 HTTP setup

By default, after the SafeKit install, the web service is configured for HTTP with file-based

authentication that must be initialized.

This default configuration can be extended as described in 11.2.1 page 179.

It can also be replaced by the unsecure setup described in 11.2.2 page 181 or anyone of

the predefined setups.

11.2.1 Default setup

Since SafeKit 7.5, the default setup relies on HTTP with file-based authentication. It

requires some initialization described below. It is a mandatory step.

This default configuration can be extended:

✓ to add users and assign them a role as described in 11.4.1.1 page 192

✓ to switch to HTTPS with:

 the SafeKit PKI described in 11.3.1 page 183

 your PKI described in 11.3.2 page 188

SafeKit User's Guide

180 39 A2 19MC 01

After the installation of SafeKit, the configuration and restart of the web service is not

necessary since this is the default configuration and the web service has been started

with it.

If you have changed the default configuration and want to revert to it, see 11.4.1 page

192.

11.2.1.1 Initialization for the web console and distributed command

SafeKit provides a script to get the web console and distributed commands up and

running quickly.

In Linux, this script can be automatically called during the install of SafeKit; in Windows,

it must be manually executed. In both cases, you will have to give the password value,

pwd for the admin user.

webservercfg -passwd pwd

On S1 and S2:

 In Windows, open a PowerShell window as

administrator and run (SAFE=C:\safekit if

%SYSTEMDRIVE%=C:)

SAFE/private/bin/webservercfg.ps1 -passwd pwd

 In Linux, open a shell window as root and run

(SAFE=/opt/safekit)

SAFE/private/bin/webservercfg -passwd pwd

You must set the same password on all nodes.

The password must be identical on all the nodes of the cluster. Otherwise,

web console and distributed commands will fail with authentication errors.

Once this initialization is done on all the cluster nodes:

 you can authenticate in the web console with the name admin and the password you

provided. The role is Admin by default (unless you change the default behavior by

providing the group.conf file as described in in 11.4.1.1 page 192)

On authentication failure in the web console, you may need to reinitialize the admin

password. For this, run again webservercfg -passwd pwd on all nodes.

 you can run distributed commands. It is based on a dedicated user rcmdadmin with

the Admin role. It is managed in a different, private user file that you do not have to

change.

On authentication failure for distributed commands, you may need to reset

rcmdadmin password. To reset only this one, without changing the admin password,

run webservercfg -rcmdpasswd pwd on all nodes.

 Securing the SafeKit web service

39 A2 19MC 01 181

11.2.1.2 Test the web console and distributed command

The setup is complete; you can now test that it is operational.

 Test the web console

1. Start a browser on the user’s workstation

2. Connect it to the default URL http://servername:9010 (where servername is the

name or Ip address of one of the SafeKit nodes)

3. In the login page, enter as user’s name admin and as password the one you gave

when you initialized it (e.g., pwd). Then click on Connect

4. The loaded page contains all the tabs that correspond to the Admin role by default

 Test the distributed command

1. Connect on S1 or S2 as administrator/root

2. Open a system console (PowerShell, shell, …)

3. Change directory to SAFE

4. Run safekit -H "*" level

that should return the level for all nodes

11.2.2 Unsecure setup based on identical role for all

It is based on the configuration of a single role that is applied to all users without

requiring authentication. This solution can only be implemented only in HTTP and is

incompatible with user authentication methods.

11.2.2.1 Configure and restart the web service

To configure where SAFE=C:\safekit in Windows if System Drive=C: ; and

SAFE=/opt/safekit in Linux):

On S1 and S2:

 edit SAFE/web/conf/httpd.conf file

 comment usefile and useldap

#Define usefile

…

#Define useldap

 select the desired role by uncommenting the associated port

and commenting all others (Admin role by default)

httpadminport (9010)

#httpcontrolport (9010)

#httpmonitorport (9010)

http://servername:9010/

SafeKit User's Guide

182 39 A2 19MC 01

✓ httpadminport for Admin role

✓ httpcontrolport for Control role

✓ httpmonitorport for Monitor role

On S1 and S2, disable HTTPS if you had configured it:

 remove the file
SAFE/web/conf/ssl/httpd.webconsolessl.conf

On S1 and S2:

 run safekit webserver restart

11.2.2.2 Test the web console and distributed command

The setup is complete; you can now test that it is operational.

 Test the web console

1. Start a browser on the user’s workstation

2. Connect it to the default URL http://servername:9010 (where servername is the

name or Ip address of one of the SafeKit nodes)

3. The loaded page contains only the tabs allowed according to the previously

selected port

 Test the distributed command

1. Connect on S1 or S2 as administrator/root

2. Open a system console (PowerShell, shell, …)

3. Change directory to SAFE

4. Run safekit -H "*" level

that should return the level for all nodes

11.3 HTTPS setup

The HTTPS web service relies on the existence of a set of certificates listed below:

The certificate of the Certification Authority CA used to issue

the server certificate for S1 and S2

The server certificate of S1 and S2 used to assert the nodes’

identity

http://servername:9010/

 Securing the SafeKit web service

39 A2 19MC 01 183

Apply one of the following 2 procedures to configure HTTPS and associated certificates:

 11.3.1 “HTTPS setup using the SafeKit PKI” page 183

Go to this section to quickly setup HTTPS with the SafeKit “private” certification

authority.

 11.3.2 “HTTPS setup using an external PKI” page 188

Go to this section to setup HTTPS with your PKI (enterprise PKI or commercial PKI)

that provides trusted certification authority.

At the end of HTTPS setup, you must implement one of the authentication methods

described in 11.4 page 192.

11.3.1 HTTPS setup using the SafeKit PKI

Apply the following steps to configure HTTPS with the SafeKit PKI and the associated

wizard:

 First, select one node, which belongs to the SafeKit cluster, to apply the first

configuration. The selected node will be hereafter called the first server (or CA

server). This server will also act as the Certificate Authority server for the other

SafeKit cluster nodes. Apply steps from 11.3.1.1 to 11.3.1.4 to setup HTTPS on the

first server, S1 for example.

 The other cluster nodes are called additional server (or non-CA server). For all

additional servers apply steps from 11.3.1.5 to 11.3.1.8 to setup HTTPS on them. S2

in the example.

 Apply step 11.3.1.9 for stopping the CA web service on all additional servers. S2 in

the example. If you want to setup client certificates as authentication method, before

stopping the CA web service on the first server, S1 in the example, apply the

procedure described in 11.4.3 page 197.

Verify that the system clock is set to the current date and time on all

SafeKit nodes and workstations that will run the HTTPS SafeKit web

console. Certificates are timestamped, and a time difference between

systems may have an impact on certificate validity.

11.3.1.1 Start the CA web service on the first server

On the server:

1. Log as administrator/root and open a command shell window

2. Change to the directory SAFE/web/bin

3. Run the command ./startcaserv

When prompted, enter a password to protect the access to this service for the

CA_admin user (for instance, PasW0rD). This command starts the safecaserv service.

SafeKit User's Guide

184 39 A2 19MC 01

Remember this password since it will be required to connect to this service

in next steps.

The CA web service running on the first server is also accessed by the

additional servers and SafeKit web console clients for downloading

certificate signatures and certificates.

Since the service listens to TCP port 9001, make sure TCP port 9001 is not

used, and is allowed in the firewall configuration. On Linux, the TCP 9001

port is automatically opened in local firewall by the startcaserv command.

In Windows, the firewallcfg command opens safecaserv service

communications.

11.3.1.2 Start the HTTPS configuration wizard on the first server

Launch the HTTPS configuration wizard by starting a local web browser on the server and

connecting it to https://localhost:9001.

The certificate associated with the local CA web service is self-signed; therefore, the

browser will display a security warning saying the certificate is invalid. This is expected,

and you must click "Continue to this website (not recommended)" to continue

At the login prompt, enter CA_admin as username, and the password you specified when

you started the CA web service (for instance, PasW0rD)

At this step, the HTTPS configuration wizard is opened.

https://localhost:9001/

 Securing the SafeKit web service

39 A2 19MC 01 185

✓ Some advanced configuration methods are present into the … panel not described

in this document

✓ The commands log panel at the bottom of the wizard displays the output of

actions that have been executed

11.3.1.3 Configure HTTPS on the first server

This step setup the first server for HTTPS:

 In HTTPS configuration wizard

 Go to Configure HTTPS server tab

 Open First server panel

 Click on the Confirm button

When the processing is completed, the Certification Authority is initialized and the

certificates necessary to run the SafeKit web service (safewebserver service) in HTTPS

mode are locally installed. Moreover, this service has been reconfigured for HTTPS and

restarted (by applying the procedure described in section 10.6.4 page 170).

SafeKit User's Guide

186 39 A2 19MC 01

11.3.1.4 Change the firewall rules on the first server

 In HTTPS configuration wizard

 Go to Change the firewall rules tab

 Select yes to automatically change rules

It consists in running the firewallcfg script, that applies default rules for SafeKit to

the operating system default firewall (in Windows, Microsoft Windows Firewall ; in

Linux, firewalld or iptables).

 Select no to not change rules

Choose this option if you want to configure the firewall yourself or if you use a

different firewall than the system one. For the list of SafeKit processes and ports, see

10.3 page 156.

 Click on the Confirm button to apply your selection

11.3.1.5 Start the CA web service on additional server

Once the first server is configured, you must configure all the additional servers. Apply

the same procedure as the one described in 11.3.1.1 page 183, for starting the CA web

service (safecaserv service) on the other server(s).

11.3.1.6 Start the HTTPS configuration wizard on additional server

Apply the same procedure as the one described in 11.3.1.2 page 184, for launching the

configuration wizard on the additional server(s).

11.3.1.7 Configure HTTPS on additional server

This step enables HTTPS on a server different from the first server:

 In HTTPS configuration wizard that is running on the additional server

 Go to Configure HTTPS server tab

 Open Additional server panel

 Securing the SafeKit web service

39 A2 19MC 01 187

 Fill in the IP address of the first server

 Fill in the password you specified when you started the CA web service on the first

server (for instance, PasW0rD)

 Click on the Confirm button

When the processing is completed, the certificates necessary to run the SafeKit web

service (safewebserver service) in HTTPS mode are locally installed. Moreover, this

service has been reconfigured and restarted for HTTPS (by applying the procedure

described in 10.6.4 page 170).

11.3.1.8 Change the firewall rules on all additional servers

Apply the same procedure as the one described in 11.3.1.4 page 186, for configuring the

firewall on additional server.

11.3.1.9 Stop the CA web service on the first server and additional servers

If you want to setup client certificates as authentication methods, before stopping the CA

web service on the first server, apply the procedure described in 11.4.3 page 197.

Once all SafeKit nodes and clients have been configured, bring the CA web service

(safecaserv service) offline on all servers, to limit the risk of accidental or malicious

access to the configuration wizard.

To stop the SafeKit CA web service:

1. Log as administrator/root and open a command shell window

2. Change to the directory SAFE/web/bin

3. Run the command ./stopcaserv

On Windows, this command also removes the service entry to prevent any

accidental start of the service afterwards. On Linux, the 9001 port is

automatically closed on local firewall.

SafeKit User's Guide

188 39 A2 19MC 01

11.3.2 HTTPS setup using an external PKI

Apply steps below to setup HTTPS with your trusted certification authority (your

enterprise PKI or commercial PKI).

11.3.2.1 Get and install server certificates

11.3.2.1.1 Get certificate files

You must get server certificates from your PKI with the expected format.

Be aware that you must provide all names and/or IP addresses, for S1 and S2,

that are used for HTTPS connections. These ones must also be included into the

SafeKit cluster configuration file. See the example in 11.3.2.1.3 page 189.

The certificate of the Certification Authority CA used to issue the server

certificates

The server certificate to assert the S1 identity.

The server certificate to assert the S2 identity.

server1.cr

t

server2.cr

t

 X509 certificate file in PEM format

The subfield CN (Common Name) into the subject field, or the

Subject Alternative Name field of the certificate, must contain :

✓ localhost and 127.0.0.1

✓ S1 name(s) and/or IP address(es) for server1.crt

✓ S2 names and/or IP address(es) for server2.crt

With SafeKit <= 7.5.2.9, the server’s name must be included.

server1.ke

y

server2.ke

y

 The private, *unencrypted* key corresponding to the certificates

server1.crt and server2.crt

 Securing the SafeKit web service

39 A2 19MC 01 189

11.3.2.1.2 Install files in SafeKit

Install the certificates as follow (where SAFE=C:\safekit in Windows if System

Drive=C: ; and SAFE=/opt/safekit in Linux):

server1.crt

server1.key

On S1:

 copy server1.crt to SAFE/web/conf/server.crt

 copy server1.key to SAFE/web/conf/server.key

server2.crt

server2.key

On S2:

 copy server2.crt to SAFE/web/conf/server.crt

 copy server2.key to SAFE/web/conf/server.key

You can check the installed certificates with:

cd SAFE/web/bin

checkcert -t server

It returns a failure if an error is detected.

You can check that the certificate contains some DNS name or IP address with:

checkcert -h ”DNS name value”

checkcert -i ”Numeric IP address value”

Check that it also contains localhost and 127.0.0.1:

checkcert -h ”localhost”

checkcert -i ”127.0.0.1”

11.3.2.1.3 Example

Consider the following architecture:

The corresponding SafeKit cluster configuration file, SAFEVAR/cluster/cluster.xml

must contain these values into addr field:

<?xml version="1.0" encoding="UTF-8"?>

<cluster>

<lans>

 <lan name="default" console="on" framework="on">

 <node name="s1" addr="10.0.0.10"/>

safekit –H https://10.0.0.10:9453
S1 S2

https://s1.w.com:9453

https://s2.w.com:9453

web console

safekit –H https://10.0.0.11:9453

distributed commands

SafeKit User's Guide

190 39 A2 19MC 01

 <node name="s2" addr="10.0.0.11"/>

 </lan>

 <lan name="console" console="on" framework="off">

 <node name="s1" addr="s1.w.com"/>

 <node name="s2" addr="s2.w.com"/>

 </lan>

</lans>

</cluster>

The server certificates must contain the same values (DNS names and/or IP addresses)

as those in the cluster configuration. If not, the SafeKit web console and distributed

commands will not work properly.

To check that the certificate file is correct:

1. Copy the .crt (or .cer) file on a Windows workstation

2. Double click on this file to open it with Crypto Shell Extensions

3. Click on the Details tab

4. Verify the Subject Alternative Name field

If you prefer the command line interface, you can run on each the SafeKit node:

SAFE/web/bin/openssl.exe x509 -text -noout -in SAFE/web/conf/server.crt

and look for the value after Subject Alternative Name

 localhost and 127.0.0.1 must be present

 with SafeKit <= 7.5.2.9, the server’s name must be present

 Securing the SafeKit web service

39 A2 19MC 01 191

11.3.2.2 Get and install the CA certificate

11.3.2.2.1 Get certificate file

You must get these certificates from your PKI with the expected format.

cacert.crt

The Certification Authority CA certificate

used to issue the server certificates.

 X509 certificate file in PEM format

The chain of certificates for the root

and intermediates CA

Server certificates for S1

and S2

If you have trouble retrieving this file from your PKI, you can build it using the procedure

described in 7.18 page 128.

11.3.2.2.2 Install file in SafeKit

Install certificates files as follow (where SAFE=C:\safekit in Windows if System

Drive=C: ; and SAFE=/opt/safekit in Linux):

cacert.crt

On S1 and S2:

 copy cacert.crt to SAFE/web/conf/cacert.crt

You can check the installed certificates with:

cd SAFE/web/bin

checkcert -t CA

It returns a failure if an error is detected.

You must also check that the cacert.crt contains the chain of certificates for the root

and intermediates Certification Authorities.

11.3.2.3 Configure and restart the web service

To enable HTTPS (where SAFE=C:\safekit in Windows if System Drive=C: ; and

SAFE=/opt/safekit in Linux):

On S1 and S2:

 copy SAFE/web/conf/httpd.webconsolessl.conf to
SAFE/web/conf/ssl/httpd.webconsolessl.conf

On S1 and S2:

 run safekit webserver restart

SafeKit User's Guide

192 39 A2 19MC 01

11.3.2.4 Change the firewall rules

You can run the firewallcfg script to change the firewall rules. It set SafeKit rules into

the operating system default firewall (in Windows, Microsoft Windows Firewall ; in

Linux, firewalld or iptables).

Firewall

On S1 and S2:

 run SAFEBIN/firewallcfg add

Don’t run this command if you want to configure the firewall yourself or if you use a

different firewall than the system one. For the list of SafeKit processes and ports, see

10.3 page 156.

11.4 User authentication setup

Setup one of the following user authentication methods:

 11.4.1 “File-based authentication setup” page 192

 11.4.2 “LDAP/AD authentication setup” page 195

 11.4.3 “Client certificate authentication setup using the SafeKit PKI” page 197

 11.4.4 “Client certificates authentication setup using an external PKI” page 204

At the end of this setup, you can start using the secure SafeKit web console.

11.4.1 File-based authentication setup

File-based authentication setup can be applied in HTTP or HTTPS. It relies on the

following files:

User file configuration that defines authorized users

Optional file to restrict the user’s role.

If the group.conf file is not present, all authenticated users will have

the Admin role.

11.4.1.1 Manage users and groups

The users and groups must be identical on S1 and S2, as well as passwords. It is defined

by the files user.conf and group.conf into SAFE/web/conf directory (SAFE=C:\safekit

in Windows if System Drive=C: ; and SAFE=/opt/safekit in Linux).

 Securing the SafeKit web service

39 A2 19MC 01 193

During the default setup initialization, described in 11.2.1 page 179, the

user named admin has been created and thus is present into user.conf.

You can decide to remove this user if you create others.

 Create a new user

Users are created with the SAFE/web/bin/htpasswd command.

For instance, to add the new user manager and set its password managerpassword,

run:

SAFE/web/bin/htpasswd -b SAFE/web/conf/user.conf manager managerpassword

The new user is inserted into SAFE/web/conf/user.conf the file.

admin:$2y$05$oPquL6Z2Y78QcXpHIako.O58Z6lWfa5A86XD.eCbEnbRcguJln9Ce

manager:$apr1$U2GLivF5$x39WKmSpq6BGmLybESgNV1

operator1:$apr1$DetdwaZz$hy5pQzpUlPny3qsXrIS/z1

operator2:$apr1$ICiZv2ru$wRkc3BclBhXzc/4llofoc1

 Assign the role of the new user

By default, all users have the Admin role. If you want to assign different roles to

different users, you must create the SAFE/web/conf/group.conf file and assign user’s

role. The group file can contain the 3 groups Admin, Control, Monitor. Users in these

groups will have the corresponding roles.

Each line of the group file must contain the group name followed by a

colon, followed by the member users name separated by spaces. See the

example above.

For instance, assign the Control role to the new user manager:

Admin : admin

Control : manager

Monitor : operator1 operator2

If you enable the role management, you must insert the user admin into

group.conf. Otherwise, this user will no longer be operational.

 Delete a user, …

Use htpasswd -? for all user management commands (add/delete, ...).

SafeKit User's Guide

194 39 A2 19MC 01

11.4.1.2 Install files

Install the files as follow (where SAFE=C:\safekit in Windows if System Drive=C: ;

and SAFE=/opt/safekit in Linux):

On S1 and S2:

 copy user.conf to SAFE/web/conf/user.conf

On S1 and S2 if groups are set:

 copy group.conf to SAFE/web/conf/group.conf

These files must be identical on all nodes.

11.4.1.3 Configure and restart the web service

To configure the file-based authentication (where SAFE=C:\safekit in Windows if

System Drive=C: ; and SAFE=/opt/safekit in Linux):

On S1 and S2:

 edit SAFE/web/conf/httpd.conf file

 uncomment usefile

Define usefile

 verify that useldap is commented

Define useldap

 verify that only httpadminport is defined

httpadminport (9010)

#httpcontrolport (9010)

#httpmonitorport (9010)

On S1 and S2:

 run safekit webserver restart

Since SafeKit 7.5, this is the default content of httpd.conf.

11.4.1.4 Test the web console and distributed command

The setup is complete; you can now test that it is operational.

 Test the web console

1. Start a browser on the user’s workstation

2. Connect it to the default URL http://servername:9010 (where servername is the

name or Ip address of one of the SafeKit nodes). If HTTPS is configured, there is

an automatic redirection to https://servername:9453

http://servername:9010/
https://servername:9453/

 Securing the SafeKit web service

39 A2 19MC 01 195

3. In the login page, fill in the user’s name and password then click on Connect

With the SafeKit 7.5 default configuration, you can log-in with the user admin by

giving the password you assigned during initialization.

4. The loaded page contains only the tabs allowed according to the user's role. If the

groups have not been defined, all users have the Admin role.

 Test the distributed command

1. Connect on S1 or S2 as administrator/root

2. Open a system console (PowerShell, shell, …)

3. Change directory to SAFE

4. Run safekit -H "*" level

that should return the level for all nodes

11.4.2 LDAP/AD authentication setup

LDAP/AD authentication setup can be applied in HTTP or HTTPS. It requires:

LDAP/Active Directory account configuration used to

assert the user identity

Optional LDAP/Active Directory group configuration to

restrict the user’s role.

When groups are not defined, all authenticated users

have the Admin role.

On some Linux distributions (such as RedHat 8 and CentOS 8), the web

server start fails when it is configured with LDAP/AD authentication. In this

case, apply the solution described in SK-0092.

Apply the steps described below after verifying that S1 and S2 can connect to the LDAP

controller domain port (default is 389).

11.4.2.1 Manage users and groups

If necessary, ask your LDAP administrator to create users of the SafeKit web console.

If you want to define user’s role, ask your LDAP administrator to create groups for

Admin, Control, Monitor roles and assign users to groups. When groups are not defined,

all users will have the Admin role.

11.4.2.2 Configure and restart the web service

To configure the LDAP/AD authentication (where SAFE=C:\safekit in Windows if

%SYSTEMDRIVE%=C: ; and SAFE=/opt/safekit in Linux):

https://support.evidian.com/solutions/downloads/safekit/version_7.5/documentation/safekitknowledgebase.htm#SK-0092

SafeKit User's Guide

196 39 A2 19MC 01

On S1 and S2:

Initialize the authentication for the distributed command. This may have already

been done if you initialized the default configuration after SafeKit installation.

Otherwise:

 Run webservercfg -rcmdpasswd pwd

where pwd is the password for the private user rcmdadmin. You don’t need to

memorize it.

On S1 and S2:

 edit SAFE/web/conf/httpd.conf file

 comment usefile

#Define usefile

 uncomment useldap

Define useldap

 verify that only httpadminport is defined

httpadminport (9010)

#httpcontrolport (9010)

#httpmonitorport (9010)

 uncomment the following lines and replace bold values according to your

LDAP/AD service configuration:

Define binddn "CN=bindCN,OU=bindOU1,OU=bindOU2,DC=domain,DC=fq,DC=dn"

Define bindpwd "Password0"

Define searchurl "ldap://ldaporad.fq.dn:389/OU=searchou, DC=domain, DC=fq,

DC=dn?sAMAccountName, memberOf?sub?(objectClass=*)"

✓ the binddn and bindpwd variables must contain the credentials of an account

with search rights on the directory

✓ the searchurl variable defines the RFC2255 search URL to authenticate the

user

CN: common name

OU: organization unit

DC: domain component (one field for each part of the FQDN)

If the group configuration is not enabled, all authenticated users will have the

Admin role.

On S1 and S2

To enable group management:

 edit SAFE/web/conf/httpd.conf file

 Securing the SafeKit web service

39 A2 19MC 01 197

 uncomment the following lines and replace bold values according to your

LDAP/AD service configuration:

Define admingroup

"CN=Group1CN,OU=Group1OU1,OU=Group1OU2,DC=domain,DC=fq,DC=dn"

Define controlgroup

"CN=Group2CN,OU=Group2OU1,OU=Group2OU2,DC=domain,DC=fq,DC=dn"

Define monitorgroup

"CN=Group3CN,OU=Group3OU1,OU=Group3OU2,DC=domain,DC=fq,DC=dn"

Users set into the LDAP/AD groups associated to admingroup, controlgroup and

monitorgroup, will respectively have Admin, Control and Monitor roles.

For more sophisticated authentication, read Apache web service documentation

(see http://httpd.apache.org).

On S1 and S2:

 run safekit webserver restart

11.4.2.3 Test the web console and distributed command

The setup is complete; you can now test that it is operational.

 Test the web console

1. Start a browser on the user’s workstation

2. Connect it to the default URL http://servername:9010 (where servername is the

name or Ip address of one of the SafeKit nodes). If HTTPS is configured, there is

an automatic redirection to https://servername:9453

3. In the login page, fill in the user’s name and password then click on Connect

5. The loaded page contains only the tabs allowed according to the user's role. If the

groups have not been defined, all users have the Admin role.

 Test the distributed command

1. Connect on S1 or S2 as administrator/root

2. Open a system console (PowerShell, shell, …)

3. Change directory to SAFE

4. Run safekit -H "*" level

that should return the level for all nodes

11.4.3 Client certificate authentication setup using the SafeKit PKI

Once the HTTPS setup has been completed, as described in 11.3.1 page 183, you can go

on client certificates authentication setup:

1. the web service configuration must be modified to enable client certificates

authentication as described in 11.4.3.1

http://httpd.apache.org/
http://servername:9010/

SafeKit User's Guide

198 39 A2 19MC 01

2. the Client certificate configuration wizard helps to create, download, and import

client certificates on the user’s workstation. To do this, apply sections 11.4.3.2 to

11.4.3.5 on each workstation of the users concerned

Verify that the system clock is set to the current date and time for all

clients. Certificates are timestamped, and a time difference between

systems may have an impact on certificate validity.

The configuration wizards associated with the SafeKit PKI manage the creation of all the

certificates required for setting up the client certificate authentication for the web console

and distributed commands:

The certificate of the Certification Authority CLCA used

to issue the client certificates

The client certificates used to assert the user identity

and its role in the console

The client certificates used to assert the administrator

identity on S1 and S2 for distributed commands

The client certificates used to assert the administrator

identity on S1 and S2 for the console in proxy mode.

They are built from admin1 and admin2 certificates.

This implementation corresponds to the one supported since SafeKit 7.4. It has been

slightly simplified since SafeKit 7.5 but only for the configuration with an external PKI.

11.4.3.1 Configure and restart the web service

To enable client certificates authentication (where SAFE=C:\safekit in Windows if

%SYSTEMDRIVE%=C: ; and SAFE=/opt/safekit in Linux):

On S1 and S2:

 edit SAFE/web/conf/httpd.conf file

 comment usefile and useldap

Define useldap

…

Define usefile

 Securing the SafeKit web service

39 A2 19MC 01 199

 verify that only httpadminport is defined

httpadminport (9010)

#httpcontrolport (9010)

#httpmonitorport (9010)

On S1 and S2:

 run safekit webserver restart

11.4.3.2 Start the Client certificate configuration wizard

 Log on the workstation of the user that will access to the console

 Connect a browser to https://firstserver:9001/adduser.html where firstserver is

the IP address of the first server configured for HTTPS

 The certificate associated with the CA web service is self-signed; therefore, the

browser will display a security warning saying the certificate is invalid. This is

expected, and you must click through the warning to continue.

 At the login prompt, enter CA_admin as username, and the password you specified

when you started the CA web service on the CA server (for instance, PasW0rD)

At this step, the Client certificate configuration wizard is opened.

https://firstserver:9001/adduser.html

SafeKit User's Guide

200 39 A2 19MC 01

11.4.3.3 Create and/or download the client certificates

Create a new client certificate for the user if it does not already exist.

 Create a new client certificate

1. Fill in the user name, password and role fields of the form. Please note that the

username must be unique.

2. Click on Confirm

After the form is processed, the resulting client certificate (the

user_Admin_administrator.p12 file) is downloaded

Once the client certificate is downloaded (the new one or the existing one), import it into

the user’s workstation certificate store. Web console access is denied until you import the

client certificate.

 Securing the SafeKit web service

39 A2 19MC 01 201

11.4.3.4 Import the client certificate into the personal certificate store

The procedure depends on the browser and/or the operating system used. The following

describes the installation in Windows.

 Click on the downloaded .p12 file (for

instance

user_Admin_administrator.p12) for

opening the certificate window. Then

click on Install Certificate button.

 It opens the Certificate Import

Wizard. Select Current User and

click on the Next button. Go on

until the wizard requires the

password that protects the

certificate.

SafeKit User's Guide

202 39 A2 19MC 01

 Enter the password when

required. The password to use is

the one set during client

certificate creation described

above

 Let the wizard automatically

select the certificate store

that is the Personal store.

 Then complete the certificate

import.

11.4.3.5 Import the CA certificate as trusted root certification authority

The browser will issue security warnings when you connect to the SafeKit web console

unless you import the CA certificate. The procedure depends on the browser and the

operating system used. The following describes the installation in Windows.

 Click on Confirm to download the CA certificate

 Securing the SafeKit web service

39 A2 19MC 01 203

 Click on the downloaded cacert.crt

file for opening the certificate window.

Then click on Install Certificate button

 It opens the Certificate Import

Wizard. Select Current User and click

on the Next button

 Browse stores to select the

Trusted Root Certification

Authorities store. Then click

on Next button

 Then complete the certificate

import.

SafeKit User's Guide

204 39 A2 19MC 01

11.4.3.6 Test the web console and distributed command

The setup is complete; you can now test that it is operational.

 Test the web console

Once certificates are imported on the user workstation, the secure SafeKit web

console can be used.

1. Click on the Confirm button

or

1. Start a browser on the user’s workstation

2. Connect it to the default URL http://servername:9010 (where servername is the

name or Ip address of one of the SafeKit nodes. Since HTTPS is configured, there

is an automatic redirection to https://servername:9453

3. Depending on the browser and the server IP address, you may sometimes need to

select the client certificate to use (the friendly name is displayed)

4. The loaded page contains only the tabs allowed according to the user's role

 Test the distributed command

1. Connect on S1 or S2 as administrator/root

2. Open a system console (PowerShell, shell, …)

3. Change directory to SAFE

4. Run safekit -H "*" level

that should return the level for all nodes

11.4.4 Client certificates authentication setup using an external PKI

Client certificates authentication relies on the existence of a set of certificates listed

below:

The certificate of the Certification Authority CLCA used to issue

the client certificates

The client certificates used to assert the user identity and its role

in the console

 Personal certificate deployed in the company as the user's

digital identity

http://servername:9010/

 Securing the SafeKit web service

39 A2 19MC 01 205

Or

 Dedicated certificate generated for the console

The client certificates used to assert the administrator identity on

S1 and S2 for distributed commands

 Server certificate when it can also be used as client certificate

Or

 Dedicated certificate generated for distributed commands

The client certificates used to assert the administrator identity on

S1 and S2 for the console in proxy mode. They are built from

admin1 and admin2 certificates.

Apply the following steps to setup user authentication based on client certificates get

from your PKI. Previously, HTTPS must have been configured as described in 11.3.2 page

188.

11.4.4.1 Get and install client certificates for the distributed command

11.4.4.1.1 Use server certificates

The server certificates are the one generated during HTTPS configuration described in

11.3.2 page 188.

To verify that these certificates can be used as client certificates, read their contents.

Below is the procedure in Windows:

1. Copy the server.crt file on a Windows workstation

2. Double click on this file to open it with “Crypto Shell Extensions”

3. Select the “Details” tab

4. Verify the content of the Enhanced Key Usage field

If you prefer the command line interface, you can run on each the SafeKit

node:

SAFE/web/bin/openssl.exe x509 -text -noout -in
SAFE/web/conf/server.crt

and look for the value TLS Web Client Authentication under the field
X509v3 Extended Key Usage.

SafeKit User's Guide

206 39 A2 19MC 01

Note the CN value into the Subject field, that is used later to configure

roles.

Since the Key Usage field contains the Client Authentication value, this server

certificate can be used as client certificate for the distributed command:

The client certificate to authenticate S1 when running distributed

command.

admin1.crt copy server1.crt to admin1.crt

admin1.key copy server1.key to admin1.key

The client certificate to authenticate S2 when running distributed

command.

admin2.crt copy server2.crt to admin2.crt

admin2.key copy server2.key to admin2.key

 Securing the SafeKit web service

39 A2 19MC 01 207

11.4.4.1.2 Use dedicated client certificates

When server certificates cannot be used, you must get new client certificates from you

PKI with the expected format described below:

The client certificate to authenticate S1 when running distributed

command.

The client certificate to authenticate S2 when running distributed

command.

admin1.crt

admin2.crt

 X509 certificate file in PEM format

The Key Usage field contains the Client Authentication value.

The subfield CN (Common Name) into the subject field contains the

name of the server.

Note the CN value, that is used later to configure roles.

admin1.key

admin2.key

 The private, *unencrypted* key corresponding to the certificates

admin1.crt/admin2.crt

11.4.4.1.3 Install files in SafeKit

Install the client certificates as follow (where SAFE=C:\safekit in Windows if System

Drive=C: ; and SAFE=/opt/safekit in Linux):

admin1.crt

admin1.key

On S1:

 copy admin1.crt to SAFE/web/conf/admin.crt

 copy admin1.key to SAFE/web/conf/admin.key

admin2.crt

admin2.key

On S2:

 copy admin2.crt to SAFE/web/conf/admin.crt

 copy admin2.key to SAFE/web/conf/admin.key

proxy.crtkey

On S1 and S2:

Build the SAFE/web/conf/proxy.crtkey file as follow:

 convert admin.key in rsa format by running

SAFE/web/bin/openssl rsa -in SAFE/web/conf/admin.key -

out SAFE/web/conf/rsa-admin.key

SafeKit User's Guide

208 39 A2 19MC 01

 concatenate admin.crt and rsa-admin.key files into the

proxy.crtkey file using a text editor or command line

You can check the installed certificates with:

cd SAFE/web/bin

checkcert -t client

It returns a failure if an error is detected.

11.4.4.2 Get and import client certificates for the web console

11.4.4.2.1 Use personal certificates

In some companies, each user has a personal certificate as a digital ID, which is stored in

the certificate store on the user's workstation.

The personal certificate is used to assert identity of the user in

the console

Personal certificate

To verify that this certificate can be used as client certificate for the web console, read its

contents. Below is the procedure in Windows:

1. Log-in the user’s workstation

2. Open a PowerShell console

3. Run certmgr

4. Locate the certificate, typically in “Certificates - Current User\Personal\Certificates”,

and right-click

5. Right-click et select “Open” to open the Certificate window

6. In the Certificate window, select the “Details” tab

7. Verify the content of the Enhanced Key Usage field

For instance, the personal certificate of Mary Smith contains:

 Securing the SafeKit web service

39 A2 19MC 01 209

Note the CN value into the Subject field, that is used later to configure

roles.

Since the Key Usage field contains the Client Authentication value, this personal

certificate can be used as client certificate for the console. In that case, there is no need

to import it since it is already present in the certificates store on the user’s workstation.

11.4.4.2.2 Use dedicated client certificates

When personal certificates cannot be used, you must get a new client certificate from you

PKI with the expected format described below:

user.p12

The client certificate to authenticate the user of the web console

 X509 certificate file in PKCS#12 format

The Key Usage field contains the Client Authentication value. The

subfield CN (Common Name) into the subject field contains the name

of the user.

Note the CN value, that is used later to configure roles.

For each web console user, you must import their certificate into their certificate store.

Below is the import procedure in Windows:

1. Log-in the user’s workstation

2. Double click on the user.p12 file for opening the certificate window

3. Click on Install Certificate button

It opens the Certificate Import Wizard

4. Select Current User and click on the Next button

5. Go on and let the wizard automatically select the certificate store

It must be the Personal store

6. Then complete the certificate import

SafeKit User's Guide

210 39 A2 19MC 01

11.4.4.3 Get, install, and import the CLCA certificate

11.4.4.3.1 Get certificate file

You must retrieve this certificate from your PKI with the expected format.

clcacert.crt

The Certification Authority CLCA certificate

used to issue the client certificates.

 X509 certificate file in PEM format

The chain of certificates for the root and

intermediates CLCA

If different CLCAs are used to generate the

different client certificates, the clcacert.crt

file must contain the concatenation of each

CLCA certificates.

Client certificates for

distributed command

Client certificates for web

console users

If you have trouble retrieving this file from your PKI, you can build it using the procedure

described in 7.18 page 128.

If your PKI uses the same certification authority for issuing server and

client certificates, the files cacert.crt and clcacert.crt are identical.

The cacert.crt file was installed during the HTTPS configuration

procedure (see 11.3.2.2 page 191).

11.4.4.3.2 Install file in SafeKit

Install the certificate as follow (where SAFE=C:\safekit in Windows if System Drive=C:

; and SAFE=/opt/safekit in Linux):

clcacert.crt

On S1 and S2:

 copy clcacert.crt to SAFE/web/conf/clcacert.crt

You can check the installed certificates:

cd SAFE/web/bin

checkcert -t CLCA

It returns a failure if an error is detected.

In addition, you must check that the clcacert.crt contains the chain of certificates for

the root and intermediates Certification Authorities.

11.4.4.3.3 Import the certificate in the user’s certificate store

If the CA certificate has not been imported, the browser issues security alerts when the

user connects to the web console with his client certificate. If the import has not already

been done, apply the procedure below in Windows:

 Securing the SafeKit web service

39 A2 19MC 01 211

1. Log-in the user’s workstation

2. Click on the clcacert.crt file for opening the certificate window

3. Click on Install Certificate button

It opens the Certificate Import Wizard

4. Select Current User and click on the Next button

5. Go on and install the certificate into the Trusted Root Certification Authorities store

6. Then complete the certificate import

11.4.4.4 Configure roles

The client certificate is used to authenticate the user of the console or of the distributed

command. A role must be assigned to it to define the authorized actions.

This must be defined in the file sslgroup.conf that can contain the 3 groups Admin,

Control, Monitor. Users in these groups will have the corresponding roles.

Each line of the group file must contain the group name followed by a

colon, followed by the member users name separated by spaces. See the

example above.

 edit the file sslgroup.conf

 assign role for each client certificates

1. get the value of the subfield CN (Common Name) into the subject

field of the certificate

2. add CN with the desired role

✓ for the console certificates, it can be any role: Admin, Control

or Monitor

✓ for the distributed command certificates, the role must be

Admin

On S1 and S2 if groups are set:

 copy sslgroup.conf to SAFE/web/conf/sslgroup.conf

In the following example, s1.w.com and s2.w.com are the CN value for distributed

command certificates ; the other names are the CN value for console certificates:

Admin : ”s1.w.com” “s2.w.com” ”MARY SMITH” admin

Control: ”NAD ROU” “DAVID JOHNS” manager

Monitor : monitor

11.4.4.5 Configure and restart the web service

To enable client certificates authentication (where SAFE=C:\safekit in Windows if

%SYSTEMDRIVE%=C: ; and SAFE=/opt/safekit in Linux):

SafeKit User's Guide

212 39 A2 19MC 01

On S1 and S2:

 edit SAFE/web/conf/httpd.conf file

 comment usefile and useldap:

Define useldap

…

Define usefile

 verify that only httpadminport is defined

httpadminport (9010)

#httpcontrolport (9010)

#httpmonitorport (9010)

On S1 and S2:

 run safekit webserver restart

11.4.4.6 Test the web console and distributed command

The setup is complete; you can now test that it is operational.

 Test the web console

Once certificates are imported on the user workstation, the web console can be used.

1. Start a browser on the user’s workstation

2. Connect it to the default URL http://servername:9010 (where servername is the

name or Ip address of one of the SafeKit nodes). Since HTTPS is configured, there

is an automatic redirection to https://servername:9453

3. Depending on the browser and the server IP address, you may sometimes need to

select the client certificate to use (the friendly name is displayed)

4. The loaded page contains only the tabs allowed according to the user's role

 Test the distributed command

1. Connect on S1 or S2 as administrator/root

2. Open a system console (PowerShell, shell, …)

3. Change directory to SAFE

4. Run safekit -H "*" level

that should return the level for all nodes

http://servername:9010/

 Securing the SafeKit web service

39 A2 19MC 01 213

11.5 Setup example for HTTPS and personal certificate

authentication

This section is a summary of the configuration with an external PKI. It shows the

configuration of HTTPS and authentication based on users' personal certificates, for the

following example:

This simplified setup is only available under certain conditions described below. For all

other cases, please refer to 11.3.2 page 188 for the HTTPS setup and to 11.4.4 page 204

for the user authentication setup based on client certificates.

11.5.1 Verify prerequisites

 SafeKit cluster configuration

Configure the SafeKit cluster, into SAFEVAR/cluster/cluster.xml, as below:

<?xml version="1.0" encoding="UTF-8"?>

<cluster>

<lans>

 <lan name="default" console="on" framework="on">

 <node name="s1" addr="s1.w.com"/>

 <node name="s2" addr="s2.w.com"/>

 </lan>

</lans>

</cluster>

 Server certificates

Request from your PKI, for each SafeKit node, the files for the certificate and the

associated key.

Review the certificate content:

✓ Check that Enhanced Key Usage field contains Client Authentication

✓ Check that addr values in cluster.xml is present into the Subject Alternate

Name field

✓ With SafeKit <= 7.5.2.9, check that server’s name is present into the Subject

Alternate Name field

✓ Note the CN value into the Subject field, that is used later to fill the

sslgroup.conf file

SafeKit User's Guide

214 39 A2 19MC 01

Server certificate for S1

server1.crt and server1.key files

Server certificate for S2

server2.crt and server2.key files

 Personal certificate for the users

It should be present on the user’s workstation, inside the certificates store

(certmgr.msc) under “Certificates - Current User\Personal\Certificates”

Review the certificate content:

✓ Check that Enhanced Key Usage field contains Client Authentication

✓ Note the CN value into the Subject field, that is used later to fill the

sslgroup.conf file

Personal certificate for Mary Smith Personal certificate for David Johns

11.5.2 Setup HTTPS and personal certificate authentication

Apply the following steps to setup HTTPS and client authentication with personal

certificates.

 Securing the SafeKit web service

39 A2 19MC 01 215

11.5.2.1 Get and install certificates in SafeKit

server1.crt

server1.key

On S1:

 Server certificate

✓ copy server1.crt to SAFE/web/conf/server.crt

✓ copy server1.key to SAFE/web/conf/server.key

 Client certificate for the distributed command

✓ copy server1.crt to SAFE/web/conf/admin.crt

✓ copy server1.key to SAFE/web/conf/admin.key

server2.crt

server2.key

On S2:

 Server certificate

✓ copy server2.crt to SAFE/web/conf/server.crt

✓ copy server2.key to SAFE/web/conf/server.key

 Client certificate for the distributed command

✓ copy server2.crt to SAFE/web/conf/admin.crt

✓ copy server2.key to SAFE/web/conf/admin.key

proxy.crtkey

On S1 and S2:

 Client certificate for the proxy mode of the console

Build the SAFE/web/conf/proxy.crtkey file as follow:

✓ convert admin.key in rsa format by running

SAFE/web/bin/openssl rsa -in SAFE/web/conf/admin.key

-out SAFE/web/conf/rsa-admin.key

✓ concatenate admin.crt and rsa-admin.key files into the

SAFE/web/conf/proxy.crtkey file using a text editor or

command line

SafeKit User's Guide

216 39 A2 19MC 01

cacert.crt

Get the Certification Authority certificate used to issue the server

certificates (the certificate chain of the root and intermediates CAs if

any). If you do not have it, you can build it as follow:

✓ “View Certificate” of the root and intermediates to export them

into a file in the “Base-64 encoded X.509 (.CER)” format

✓ Concatenate 1, 2 into cacert.crt

On S1 and S2:

 copy cacert.crt to SAFE/web/conf/cacert.crt

clcacert.crt

Get the Certification Authority certificate used to issue the personal

certificates (the certificate chain of the root and intermediates CAs if

any). If you do not have it, you can build it as follow:

“View Certificate” of the root and intermediates to export them into a

file in the “Base-64 encoded X.509 (.CER)” format. Concatenate 1, 2

into personalcacert.crt

 On S1 and S2:

 concatenate cacert.crt and personalcacert.crt into
SAFE/web/conf/clcacert.crt

 Securing the SafeKit web service

39 A2 19MC 01 217

11.5.2.2 Configure roles

On S1 and S2:

 edit the file SAFE/web/conf/sslgroup.conf

 assign role for each client certificates

Admin:"s1.w.com" "s2.w.com" "MARY SMITH"

Control:"DAVID JOHNS"

11.5.2.3 Configure and restart the web service

On S1 and S2:

 edit SAFE/web/conf/httpd.conf file

 comment usefile and useldap:

Define useldap

…

Define usefile

 verify that only httpadminport is defined

httpadminport (9010)

#httpcontrolport (9010)

#httpmonitorport (9010)

On S1 and S2:

 copy SAFE/web/conf/httpd.webconsolessl.conf to
SAFE/web/conf/ssl/httpd.webconsolessl.conf

On S1 and S2:

 run safekit webserver restart

11.5.2.4 Change the firewall rules

Firewall

On S1 and S2:

 run SAFEBIN/firewallcfg add

11.5.3 Test the web console and distributed command

The HTTPS and authentication setup is complete; you can now test that it is operational.

 Test the web console

1. Start a browser on Mary Smith or David Johns workstation

2. Connect it to https://s1.w.com:9453/ or https://s2.w.com:9453/

SafeKit User's Guide

218 39 A2 19MC 01

3. Depending on the browser and the server IP address, you may sometimes need to

select the client certificate to use (the friendly name is displayed)

4. The loaded page contains only the tabs allowed according to the user's role

✓ Mary Smith, with Admin role, can access to Configuration, Control,

Monitoring and Advanced Configuration tabs

✓ David Johns, with Control role, can access to Control and Monitoring tabs

 Test the distributed command

1. Connect on S1 or S2 as administrator/root

2. Open a system console (PowerShell, shell, …)

3. Change directory to SAFE

4. Run safekit -H "*" level

that should return the level for all nodes

11.6 SafeKit PKI advanced configuration

11.6.1 Configuring with the command line interface

First, choose one SafeKit node to act as the Certificate Authority server. The selected

node will be hereafter called the CA server. The other cluster nodes are called non-CA

server. Then go through all the next subsections to activate the HTTPS configuration

with the SafeKit PKI.

Verify that the system clock is set to the current date and time on all

SafeKit nodes and workstations that will run the HTTPS SafeKit web

console. Certificates are timestamped, and a time difference between

systems may have an impact on certificate validity.

11.6.1.1 Start the CA web service on the CA server

Apply the same procedure as the one described in 11.3.1.1 page 183, for starting the CA

web service (safecaserv service).

11.6.1.2 Generate Certificates on the CA server

During this step, the environment for generating certificates is set up: certificate

authority, local server and client certificates are created; and server-side certificates are

installed in their expected location.

Verify that the system clock is set to the current date and time on the server.

Certificates are timestamped, and a time difference between systems may have

an impact on certificate validity.

By default, the server certificate includes all the locally defined IP addresses and DNS

names. They are listed into the files: SAFE/web/conf/ipv4.json,

SAFE/web/conf/ipv6.json and SAFE/web/conf/ipnames.json. These files are built by

the command that start the CA web service, called in the previous step.

 Securing the SafeKit web service

39 A2 19MC 01 219

If the service will be accessed using another DNS name or IP address, edit the

corresponding file to insert the new value before executing the initssl

command. This is required for instance in the clouds using NAT, where the

server has a public address mapped on a private address.

On the CA server:

1. Log as administrator/root and open a command shell window

2. Change to the directory SAFE/web/bin

3. Run the command:

./initssl ca

This command creates a Certificate Authority certificate with the default subject name

(that is “SafeKit Local Certificate Authority”). To customize the subject name, run the

command with an extra parameter:

./initssl ca “/O=My Company/OU=My Entity/CN=My Company Private

Certificate Authority”

When prompted, enter a password to protect the three default role client certificates

and key pairs:

Enter the password for the Admin role pkcs12 file

(../conf/ca/private/user_Admin_administrator.p12) twice:

 pwd1

 pwd1

Enter the password for the Control role pkcs12 file

(../conf/ca/private/user_Control_manager.p12) twice:

 pwd2

 pwd2

Enter the password for the Monitor role pkcs12 file

(../conf/ca/private/user_Monitor_operator.p12) twice:

 pwd3

 pwd3

The passwords entered at this stage will be needed later to import the

client certificates on the client workstation (described in section

11.4.3.4 page 201).

 Optionally, copy the generated client certificates (.p12 files), that you want to publish,

into ../conf/ca/certs. Also copy the CA certificate cacert.crt.

11.6.1.3 Generate certificates on non-CA server

During this step, on non-CA servers, local certificate requests are created, signed

certificates are retrieved from the CA server, and finally certificates are installed at their

expected locations.

Apply the following procedure sequentially on each non-CA servers:

SafeKit User's Guide

220 39 A2 19MC 01

1. Log on as administrator/root and open a command shell window

2. Change to the directory SAFE/web/bin

3. List server DNS names and IP addresses

By default, the server certificate includes all the locally defined IP addresses and DNS

names. They are listed into the files: SAFE/web/conf/ipv4.json,

SAFE/web/conf/ipv6.json and SAFE/web/conf/ipnames.json. For building these

files, run the command:

 In Linux

./getipandnames

This command relies on the host command delivered with the bind-utils

package. Install it if necessary or manually fill the DNS names into the file

SAFE/web/conf/ipnames.json.

 In Windows

./getipandnames.ps1

If the service will be accessed using another DNS name or IP address, edit the

corresponding file to insert the new value before executing the initssl

command. This is required for instance in the clouds using NAT, where the

server has a public address mapped on a private address.

4. Run the command:

./initssl req https://CAserverIP:9001 CA_admin

where CAserverIP is the DNS name or IP address of the CA server. Then enter, each

time it is required, the password you specified when you started the CA web service

on the CA server (for instance, PasW0rD)

Or

./initssl req https://CAserverIP:9001 CA_admin:PasW0rD

If you get the error "Certificate is not yet valid", it means the system clock

of the server is not synchronized with the system clock of the CA server.

You should synchronize your server clocks and re-run the initssl

command if the time difference is not acceptable.

11.6.1.4 Reconfigure the web service for HTTPS on CA server and non-CA server

Once certificates are generated on the CA server and each non-CA servers, the SafeKit

web service (safewebserver service) can be configured for HTTPS. Apply the procedure

described in 10.6.4 page 170, on all the servers.

11.6.1.5 Configure the firewall on CA server and non-CA server

When the SafeKit web service runs in HTTPS mode, it is safe to allow network

communication with this server and configure the firewall. For this, apply the instructions

described in 10.3 page 156.

11.6.1.6 Use the HTTPS SafeKit Web console

1. Download from the CA server the client (.p12 files) and the CA certificates

(cacert.crt file) located into SAFE/web/conf/ca/certs

 Securing the SafeKit web service

39 A2 19MC 01 221

2. Import the set of certificates as described in 11.4.3.4 page 201 and 11.4.3.5 page

202

11.6.1.7 Stop the CA web service on CA server

Once all SafeKit nodes and clients have been configured, it is recommended to bring the

CA web service (safecaserv service) offline on the CA server, to limit the risk of

accidental or malicious access to the configuration wizard.

For stopping the SafeKit CA web service with the command line:

1. Log as administrator/root and open a command shell window

2. Change to the directory SAFE/web/bin

3. Run the command ./stopcaserv

On Windows, this command also removes the service entry to prevent any

accidental start of the service afterwards. On Linux, the 9001 port is

automatically closed on local firewall.

When all foreseeable certificate generation and installation is done, it is a good practice

to make sure files unnecessary at production time are not accessible. This step is not

mandatory.

The files that constitute the CA, i.e., the SAFE/web/conf/ca file tree (especially the

private keys stored under SAFE/web/conf/ca/private/*.keys) should be stored for

future use on a removable storage media and removed from the server. Store the

removable media in a secure place (i.e., a vault). This also applies to the files located

under the SAFE/web/conf/ca directory of non-CA servers. The CA files should be

restored into the same location before using the CA again (for example, if adding a new

SafeKit cluster node).

11.6.2 Renewing certificates

Every certificate has an expiration date. The default expiration date of the CA certificate

is set to 10 years after the CA installation date. The default expiration date of the server

and client certificates is set to 5 years after the certificate request date.

Expired client certificates cannot be used to log on to the console, and expired server

certificates will trigger warnings when the browser connects to the server. Expired CA

certificates cannot be used to validate issued certificates.

It is possible to renew certificates using the original certificate requests and the private

keys stored under the SAFE/web/conf/ca directory tree. You may also create a new

certificate request using the existing private key. The procedure to do so is beyond the

scope of this document, see openssl (or your certificate authority) documentation.

Creating a new set of certificates (and private keys) will have the side effect of renewing

all certificates. To create a new set of certificates:

1. Erase the web/conf/ca directory on all SafeKit servers related to the CA, including

the CA SafeKit server itself

2. Suppress existing certificates from the client machines certificate stores

3. Apply the full procedures described in 11.3.1 page 183 and 11.4.3 page 197

SafeKit User's Guide

222 39 A2 19MC 01

11.6.3 Revoking certificates

It is possible to modify the SafeKit web service configuration to use a CRL containing the

revoked certificates list. Setting up such a configuration is beyond the scope of this

document. Refer to the Apache and openssl documentation.

Creating a new set of certificates and replacing the old set with the new one will have the

side effect of effectively revoking the previous certificate set, since the CA certificate is

different.

11.6.4 Commands for certificate generation

Commands are located, and must be executed from, the SAFE/web/bin directory.

initssl ca

[<subject>]

Parameters

<Subject>: the CA certificate subject, that identify in human readable

form the owner of the CA.

Example

initssl ca "/O=My Company/OU=My Unit/CN=My Company Private

Certificate Authority"

Description

All paths below are relative to SAFE/web directory. This command

creates a conf/ca file tree needed for the openssl certificate authority

related commands. Generated certificates will be stored in

conf/ca/certs. Generated private keys will be stored in conf/ca/private.

Note that the best practice is to protect private keys with a

password, but it needs more complex configuration on the

server and is beyond the scope of this document. See the

Apache and OpenSSL documentation for more information.

 Creates a CA certificate conf/ca/certs/cacert.crt and its

associated key conf/ca/private/cacert.key

 Creates server default certificate

conf/ca/certs/server_localca.crt and its corresponding key
conf/ca/private/server_localca.key

 Creates the client default certificate for distributed commands

conf/ca/certs/user_Admin_system.crt and its corresponding key
conf/ca/private/user_Admin_system.key

 Creates 3 default certificates corresponding to the 3 predefined roles

(Admin, Control, and Monitor) and exports it to pkcs12 file. During

this process, the script asks for a password to protect the pkcs12 file,

twice for each certificate. The resulting files are:

✓ conf/ca/private/user_Admin_administrator.p12

✓ conf/ca/private/user_Control_manager.p12

✓ conf/ca/private/user_Monitor_operator.p12

Client certificates are used as an authentication method on an HTTPS

server. They are transmitted to the web service by the browser and

verified on the server as part of the HTTPS connection handshake. A

 Securing the SafeKit web service

39 A2 19MC 01 223

certificate corresponding to the desired role must be installed in the

browser certificate store before the SafeKit web console can be used.

 Installs the CA certificate, server certificate, and system client

certificates in the conf directory

initssl req

<url>

<user>[:<pas

sword>]]

Parameters

<url>: Url of the CA service. (https://192.168.0.1:9001)

<user>,<password>: user and password used to authenticate against

the CA web service. <user> preconfigured value is CA_admin.

<password> is the one entered by the administrator at the start of CA

web service. If this optional field is not present, the password will be

asked interactively several times, when needed.

Example

initssl req https://192.168.0.1:9001 CA_admin:PasW0rD

Description

All paths below are relative to SAFE/web directory. <hostname> is the

local server's hostname.

 Creates a certificate request for a server certificate that includes all

the locally defined IP addresses and DNS names. The certificate

request is stored in conf/ca/private/server_<hostname>.csr. The

corresponding key is stored in

conf/ca/private/server_<hostname>.key.

 Creates a certificate request for a client certificate with the Admin role

(to be used by the distributed commands). The certificate request is

stored in conf/ca/private/user_Admin_<hostname>.csr. The

corresponding key is stored in

conf/ca/private/user_Admin_<hostname>.key.

 Retrieves the CA certificate from the CA server

 Retrieves signed certificates corresponding to the certificate requests

above, from the CA server (using provided login)

 Installs certificates and keys

 Checks certificates are OK

SafeKit User's Guide

224 39 A2 19MC 01

initssl req

Parameters

None

Description

All paths below are relative to SAFE/web directory.

In this form, the command stops after having generated the certificate

requests corresponding to:

 The local server, in the conf/ca/private/server_<hostname>.csr

 An Admin role client certificate, in
conf/ca/private/user_Admin_<hostname>.csr

Those certificate requests are stored in a base64 encoded file ready to

be submitted to an external certificate authority such as Microsoft

Active Directory Certificate Services (refer to the Microsoft

documentation on how to submit a base64 encoded certificate request

file).

makeusercert

<name>

<role>

Parameters

<name> is the subject's CN name of the certificate, usually the

subject's username.

<role> is subject's role as a console user. The valid value is Admin or

Control or Monitor.

Examples

makeusercert administrator Admin

makeusercert manager Control

makeusercert operator Monitor

Description

All paths below are relative to SAFE/web directory.

Creates a client certificate request (and certificate + pkcs12 file

containing certificate and key if started on the CA SafeKit server) for

the <name> and <role>.

When the pkcs12 file is generated, the command asks twice for a

password to protect the file. The generated unencrypted private key is

stored into conf/ca/private/user_<role>_<name>.key file. If

applicable, the generated certificate and pkcs12 files are stored into

conf/ca/certs/user_<role>_<name>.crt and

conf/ca/private/user_<role>_<name>.p12 files respectively.

 Securing the SafeKit web service

39 A2 19MC 01 225

11.6.5 CA web service

The SafeKit CA web service configuration is stored in

SAFE/web/conf/httpd.caserv.conf file.

This service implements limited PKI functionalities as well as a configuration wizard:

 The configuration wizard is accessible at the https://CAserverIP:9001/ URL.

 Advanced configuration forms related to external PKI use cases are also available.

https://CAserverIP:9001/advanced.html is a form allowing uploading externally

generated certificates and keys to the local server.

https://CAserverIP:9001/getcsr.html is a form allowing to retrieve locally generated

certificates, certificate requests, and p12 files and to request the signature by the

local Certification Authority of an externally generated user certificate request (.csr

file).

 CA certificates are accessible at the https://CAserverIP>:9001/certs/<certificate

name>.crt URL.

For example, the CA certificate is accessible at

https://CAserverrIP>:9001/certs/cacert.crt.

Certificate signature requests are processed by posting a form at the URL:

https://<CA server IP>:9001/caserv.

The form takes the following parameters:

action = signrequest

name = <certificate name>

servercsr = <file content of the server certificate request>

Or

usercsr = <file content of the client certificate request>

https://caserverip:9001/
https://caserverip:9001/advanced.html
https://caserverip:9001/getcsr.html

SafeKit User's Guide

226 39 A2 19MC 01

39 A2 19MC 01 227

12. Cluster.xml for a SafeKit cluster

configuration

 12.1 “Cluster.xml file” page 227

 12.2 “SafeKit cluster Configuration” page 231

SafeKit uses the configuration file cluster.xml. This file defines all the servers that

make up the SafeKit cluster as well as the IP address (or name) of these servers on the

networks used to communicate with the cluster nodes. This file also allows specifying the

use of networks:

✓ a framework network (framework="on") is a network used for internal

communications within the SafeKit framework.

These are global cluster and module internal communications; these

communications are encrypted. This network is also used for executing

distributed commands. You must define at least one framework network that

includes all nodes in the cluster. It is recommended to define several framework

networks to tolerate at least one network failure.

✓ a console network (console = "on”) is a network on which the SafeKit web

console can connect for cluster and module configuration and administration.

This type of network must include all the nodes that make up the SafeKit cluster.

You can define multiple console networks according to administrative

requirements and network topology.

By default, a network is for the console and the framework communications.

12.1 Cluster.xml file

Each network (lan) has a logical name that will be used in the configuration of the

modules to name the monitoring networks (this network must be configured with

framework = "on"):

 into the heartbeat section for a mirror module (for details, see 13.3 page 239)

 into the lan section for a farm module (for details, see 13.4 page 241)

The node name is the one that is used by the SafeKit administration service (safeadmin)

for uniquely identifying a SafeKit node. You must always use the same name for

designing a given server on different networks. This name is also used by the SafeKit

web console when displaying the server name.

SafeKit User's Guide

228 39 A2 19MC 01

12.1.1 Cluster.xml example

In the example below, both networks can be used for the console and the framework

communications (by default, console = "on" framework = "on").

<cluster>

 <lans>

 <lan name="default">

 <node name="node1" addr="192.168.1.67"/>

 <node name="node2" addr="192.168.1.68"/>

 <node name="node3" addr="192.168.1.69"/>

 <node name="node4" addr="192.168.1.70"/>

 </lan>

 <lan name="repli">

 <node name="node1" addr="10.0.0.1"/>

 <node name="node2" addr="10.0.0.2"/>

 <node name="node3" addr="10.0.0.3"/>

 <node name="node4" addr="10.0.0.4"/>

 </lan>

 </lans>

</cluster>

In the example below, the private network cannot be used by the console since it does

not include all the nodes in the cluster. This is for example a dedicated replication link for

a mirror module.

<cluster>

 <lans>

 <lan name="default">

 <node name="node1" addr="192.168.1.67"/>

 <node name="node2" addr="192.168.1.68"/>

 <node name="node3" addr="192.168.1.69"/>

 <node name="node4" addr="192.168.1.70"/>

 </lan>

 <lan name="repli" console="off">

 <node name="node1" addr="10.0.0.1"/>

 <node name="node2" addr="10.0.0.2"/>

 </lan>

 </lans>

</cluster>

In the example below, the public network is used only for administration via the console.

This is for example a public network that cannot be used for framework communications.

<cluster>

 <lans>

 <lan name="default">

 <node name="node1" addr="192.168.1.67"/>

 <node name="node2" addr="192.168.1.68"/>

 </lan>

 <lan name="public" framework=”off”>

 <node name="node1" addr="node1.mydomain.com"/>

 <node name="node2" addr="node2.mydomain.com"/>

 </lan>

 </lans>

</cluster>

 Cluster.xml for a SafeKit cluster configuration

39 A2 19MC 01 229

In the example below, a unique network is used, but in a Network address translation

(NAT) configuration. For each node two addresses must be defined: the local one

(defined on local interface) and the external one (as seen by other servers)

<cluster>

 <lans>

 <lan name="default">

 <node name="node1" addr="server1.dns.name" laddr="10.0.0.1"/>

 <node name="node2" addr="server2.dns.name" laddr="10.0.0.2"/>

 </lan>

 </lans>

</cluster>

Notes:

✓ All nodes must be able to communicate to the others via the NATted addresses.

✓ If a NATted lan is used as console lan, the Web console must be able to

communicate to the nodes via the external’s addresses.

✓ Configuration with NATted addresses could not be done via the Web console, only

with the CLI (described in section 12.2.2 page 232).

12.1.2 Cluster.xml syntax

<cluster>

 <lans [port="4800"]>

 <lan name="lan_name" [console="on|off"] [framework="on|off"]

[command="on|off"] >

 <node name="node_name" addr="IP1_address"|"IP1_name"

[laddr="local_IP1_address"]/>

 <node name="node_name" addr="IP2_address"|"IP2_name"

[laddr="local_IP2_address"] />

 …

 </lan>

 …

 </lans>

</cluster>

12.1.3 <lans>, <lan>, <node> attributes

<lans Begin the definition of the SafeKit cluster nodes

and network topology.

[port="xxxx"] Defines the UDP port with which the membership

protocol is exchanged.

Default: 4800

[pulse=”xxxx”] Defines the period of the membership protocol

messages emission. Longer pulse makes the

membership protocol use less bandwidth but react

more slowly.

[mlost_count=”xx”] Defines the number of periods elapsed without

message before electing a new leader.

[slost_count=”xx”] Defines the number of periods elapsed without

messages before declaring a follower node offline.

SafeKit User's Guide

230 39 A2 19MC 01

<lan Definition of a LAN (i.e., IPv4 broadcast domain,

IPv6 link) on which the membership protocol will be

transmitted. At least one LAN must be defined.

Define one such tag per used LAN.

name="lan name" Single logical name for the lan.

This name is used into module configuration to

name networks used by the module.

framework="on"|"off" Set framework="off" to not use this network for

SafeKit framework communications. In this case,

this network cannot be used in the configuration of

a module.

By default, framework="on".

You can define multiple <lan> sections with

framework="on" or framework="off". You must

define at least one <lan> section with

framework="on", which includes all nodes in the

cluster

Default: on

console="on"|"off" Set console="off" to not use this network for

connecting the SafeKit web console.

By default, console ="on". When console="on",

the <lan> section must include all the nodes in the

cluster.

You can define multiple <lan> sections with

console="on" or console="off". If you want to

use the web console, you must define at least one

<lan> section with console="on".

Default: on

command="on"|"off" Set command="on" to use this network for running

distributed commands on the cluster. In this case,

this <lan> section must include all nodes in the

cluster and have framework="on". You can set

only one <lan> section with command="on".

When this attribute is not set, it is the first <lan>

section with framework ="on" that is used for

running distributed commands on the cluster.

Default: off

<node Definition of one node in the SafeKit cluster. Define

as many <node> tags as there are nodes in the

cluster (at least 2).

 Cluster.xml for a SafeKit cluster configuration

39 A2 19MC 01 231

name="node name" Single logical name to the SafeKit server.

You must always use the same name for designing

a given server on different lans.

addr=

"IP_address"|

"IP_name"

IPv4 or IPv6 address, or name of the node as it is

known by other nodes on this LAN (IP address

recommended to be independent from a DNS

server). On NAT configuration, it must be the

external address.

When defining an IPv6 address, use literal format:

the address is enclosed in square brackets (e.g.

[2001::7334])

laddr=

"local_IP_address"
Local IP address on this LAN. To be used only on

NAT configurations, where local address is different

from external one.

IPv4 address or literal IPv6 address.

12.2 SafeKit cluster Configuration

12.2.1 Configuration with the SafeKit web console

The SafeKit web console provides a graphical user interface for editing the cluster.xml

file and applying the configuration on all the cluster nodes. See section 3.2 page 37 for a

full description.

 Click on Cluster Configuration to open the panel. It displays the list of cluster nodes

 Edit the configuration. In Simple edit mode, you can edit only the web console

connection network. Switch to Advanced edit mode, for editing all the networks.

 Click on the Apply button for saving and applying your configuration on all nodes and

generating new key for encrypting communications

 In Simple Edit mode, this button is enabled only if you have done changes. If you

want to generate new key or apply the configuration again, switch to the Advanced

Edit mode, then click on the Apply button.

SafeKit User's Guide

232 39 A2 19MC 01

12.2.2 Configuration with command line interface

The commands line equivalent for configuring the SafeKit cluster with a new

cryptographic key are:

1. safekit cluster config [<filepath>]

where filepath is the path for the new cluster.xml

when filepath is not set, the current configuration is kept and only encryption key is

generated

2. safekit –H "*" -G

it applies the local configuration on all SafeKit nodes defined into cluster.xml

The commands line for re-configuring without cryptographic key are:

1. safekit cluster delkey

2. safekit –H "*" -G

The commands for re-generating the cryptographic key are:

1. safekit cluster genkey

2. safekit –H "*" -G

For the full description of commands, refer to 9.3 page 144.

12.2.3 Configuration changes

When changing the SafeKit cluster configuration, the new configuration must be applied

on all the servers of the cluster. When the configuration is applied only on a subset of the

nodes present into the cluster configuration, only this subset will be able to communicate

with each other. This is also the case when the cryptographic key is not identical on all

 Cluster.xml for a SafeKit cluster configuration

39 A2 19MC 01 233

nodes. This can have the effect of disrupting the operation of the modules installed on

servers.

For a correct behavior, you must re-apply the configuration on all the nodes that belong

to the cluster as described above.

You can check the configuration by running the command safekit cluster

confinfo on each node (see section 9.3 page 144). When the configuration

is operational, this command must return on all nodes, the same list of

nodes and the same value for the configuration signature.

Changing the cluster configuration could have important impact on module configurations

since the lan names set into the SafeKit configuration are used into the module’s

configuration. Any change in the cluster configuration, will trigger modules updates:

each module will reload its configuration to adapt the changes. Such changes could lead

to module stop in case of incompatibility (for example if a lan used by a module is

removed from the cluster configuration). So, great care must be taken when modifying

cluster configuration when modules are running.

SafeKit User's Guide

234 39 A2 19MC 01

39 A2 19MC 01 235

13. Userconfig.xml for a module configuration

 13.1 “Macro definition (<macro> tag)” page 236

 13.2 “Farm or mirror module (<service> tag)” page 236

 13.3 “Heartbeats (<heart>, <heartbeat > tags)” page 239

 13.4 “Farm topology (<farm>, <lan> tags)” page 241

 13.5 “Virtual IP address (<vip> tag)” page 243

 13.6 “File replication (<rfs>, <replicated> tags)” page 251

 13.7 “Enable user scripts (<user>, <var> tags)” page 268

 13.8 “Virtual hostname (<vhost>, <virtualhostname> tags)” page 269

 13.9 “Process or service death detection (<errd>, <proc> tags)” page 271

 13.10 “Checkers (<check> tag)” page 277

 13.11 “TCP checker (<tcp> tags)” page 278

 13.12 “Ping checker (<ping> tags)” page 280

 13.13 “Interface checker (<intf> tags)” page 281

 13.14 “IP checker (<ip> tags)” page 282

 13.15 “Custom checker (<custom> tags)” page 283

 13.16 “Module checker (<module> tags)” page 285

 13.17 “Splitbrain checker (<splitbrain> tag)” page 287

 13.18 “Failover machine (<failover> tag)” page 288

userconfig.xml modifications must be applied to all the servers of the

cluster onto which the module is deployed. Apply the new configuration with:

✓ web console/ Advanced Configuration /Installed modules/ module/

Apply the configuration

✓ or web console/ Configuration/ on the module/ Edit the

configuration

✓ or safekit config –m AM command (replace AM by the module name)

It is possible to apply a new configuration while the module is running, but

only in ALONE or WAIT (red) states. This feature is called dynamic

configuration. Only a restricted subset of parameters could be changed. If

the new configuration cannot be deployed, an error message is displayed.

The attributes that can be dynamically modified are reported hereafter.

Example of userconfig.xml

<safe>

 <!-- Insert below <macro> <service> tags -->

</safe>

SafeKit User's Guide

236 39 A2 19MC 01

13.1 Macro definition (<macro> tag)

13.1.1 <macro> example

<macro name="ADDR1" value="aa.bb.com"/>

An example of macros usage is given in 15.4 page 303.

13.1.2 <macro> syntax

<macro

 name="identifier"

 value="value"

/>

13.1.3 <macro> attributes

<macro

name="identifier" A character string that identifies the macro.

value="value" The value that will replace each occurrence of

%identifier% in the rest of userconfig.xml.

/>

The syntax %identifier% can also be used in userconfig.xml to represent the

value of an environment variable named identifier. In case of conflict, it is

the macro value that is expanded.

13.2 Farm or mirror module (<service> tag)

13.2.1 <service> example

Example for a mirror module:

<service mode="mirror" defaultprim="alone" maxloop="3" loop_interval="24"

failover="on">

 <!-- Insert below <hearbeat> <rfs> <vip> <user> <vhost> <errd> <check>

<failover> tags -->

</service>

Example for a farm module:

<service mode="farm" maxloop="3" loop_interval="24">

 <!-- Insert below <farm> <vip> <user> <vhost> <errd> <check> <failover> tags --

>

</service>

See examples of <service> definition for a mirror module in 15.1 page 300 and, for a

farm module, in 15.2 page 301.

 Userconfig.xml for a module configuration

39 A2 19MC 01 237

13.2.2 <service> syntax

<service mode="mirror"|"farm"|"light"

 [boot="off"|"on"|"auto"|"ignore"]

 [boot_delay="0"]

 [failover="on"|"off"]

 [defaultprim="alone"|"server_name"|"lastprim"]

 [maxloop="3"] [loop_interval="24"]

 [automatic_reboot="off"|"on"]>

</service>

Only boot, maxloop, loop_interval and automatic_reboot

attributes can be changed with a dynamic configuration.

13.2.3 <service> attributes

<service Top level section of userconfig.xml

mode=

"mirror"|

"farm"|

"light"

The mirror keyword sets the module behavior to mirror

architecture mode. The synchronization protocol between the 2

servers is defined in section 13.3 page 239.

See mirror.safe application module for an example.

The farm keyword sets the module behavior to farm architecture

mode. The definition of the synchronization protocol between

servers is described in section 13.4 page 241.

See farm.safe application module for an example.

The light keyword sets the module behavior to the minimum

needed for one server with software error detection and local

restart only

[boot=

"on"|

"off"|

"auto"|

"ignore"]

If set to on, the module is automatically started at boot time.

If set to off, the module is not started at boot time.

If set to auto, the module is automatically started at boot time, if

it was started before the reboot.

Before SafeKit 7.5, the configuration to start the module at boot

was done with the command safekit boot -m AM on | off

(which had to be executed on each node). If you prefer to continue

using this command, remove the boot attribute or set it to ignore

(the default). The module will not be started at boot time unless

the safekit boot -m AM on command is executed.

The state of the boot configuration is visible in the

usersetting.boot resource. The status of resources is visible in

web console/ Control/Select the node/Resources tab/; with the

command safekit state -m AM -v

Default value: ignore

[boot_delay="0"] The delay, in seconds, before starting the module at boot.

Default value: 0 (no delay)

SafeKit User's Guide

238 39 A2 19MC 01

[failover=

"on"|

"off"]

For mirror module only.

If set to on, an automatic failover on the secondary server is

triggered if the primary fails or stops.

If set to off, when the primary server fails or stops, the secondary

server waits (no automatic failover is triggered). Only the prim

command can start the secondary server as primary. See

description in 5.7 page 101

Default value: on

[defaultprim=

"alone"|

"server_name"|

"lastprim"]

For mirror module only.

defaultprim specifies which server among two servers is the

default primary server for an application module.

This option is useful when a module is ALONE on a server and the

module is started on the other server.

With defaultprim="alone", the ALONE module becomes PRIM

while the module on the other server becomes SECOND. Value

recommended avoiding swap of application after reintegration.

With defaultprim="server_name", when the module is running

on two servers, the primary server among the two servers is the

one set in defaultprim. This value can be useful for active/active or

N-1 architectures see section 1.5.1 page 20 or section 1.5.2 page

21.

With defaultprim="lastprim", the restarted module becomes

PRIM if it was PRIM before its last stop.

Default value: alone

[maxloop="3"] Number of successive error detections before stop.

This attribute defines the maximum number of "restart" or

"stopstart" sequences that can be automatically triggered by

failure detectors before the module locally stops.

The counter is reset to its initial value at the expiration of the

loop_interval timeout and upon safekit start, restart,

swap, stopstart… administrative commands execution.

Note that a safekit command sent by a detector passes the -i

identity parameter and decrements the counter, whereas

administrator issued commands do not.

For more information, see 13.18.4 page 289.

This attribute’s value can be changed with a dynamic

configuration.

Since SafeKit 7.5, the maxloop is represented by the resource

heart.stopstartloop. Its current value corresponds to the date

on which the counter was initialized (in the form of a Unix Epoch

timestamp); and its assignment date corresponds either to its

 Userconfig.xml for a module configuration

39 A2 19MC 01 239

initialization or to a stopstart, restart. View the resource history

to see each increment of the loop counter.

Default value: 3

[loop_interval

="24"]
Time interval during which maxloop applies.

If set to 0, the maxloop counter becomes inactive.

Default value: 24 hours.

This attribute’s value can be changed with a dynamic

configuration.

[automatic_reboot

="off"|

"on"]

If set to on, "stopstart" triggers a reboot instead of stopping and

restarting the module.

Default value: off

This attribute’s value can be changed with a dynamic

configuration.

13.3 Heartbeats (<heart>, <heartbeat > tags)

Heartbeats must be used only for mirror architecture. For farm architecture, see section

13.4 page 241.

The basic mechanism for synchronizing two servers and detecting server failures is the

heartbeat, which is a monitoring data flow on a network shared by a pair of servers.

Normally, there are as many heartbeats as there are networks shared by the two

servers. In normal operation, the two servers exchange their states (PRIM, SECOND, the

resource states) through the heartbeat mechanism and synchronizes their application

start and stop procedures.

If all heartbeats are lost, it is interpreted as if the other server was down, and the local

server switches to the ALONE state. Although not mandatory, it is better to have two

heartbeat channels on two different networks for synchronizing the two servers to avoid

the split-brain case.

13.3.1 <heart> example

<heart>

 <heartbeat name=”default” ident="Hb1" />

 <heartbeat name=”net2” ident="Hb2" />

</heart>

13.3.2 <heart> syntax

<heart

 [port="xxxx"] [pulse="700"] [timeout="30000"]

 [permanent_arp="on"]

SafeKit User's Guide

240 39 A2 19MC 01

>

 <heartbeat

 [port="xxxx"] [pulse="700"] [timeout="30000"] name=”network” [ident="name"]

 >

 [<!-- syntax for SafeKit < 7.2 -->

 <server addr="IP1_address"|"IP1_name" />

 <server addr="IP2_address"|"IP2_name" />

]

</hearbeat>

 …

</heart>

The <heart> tag and full subtree can be changed with a

dynamic configuration.

13.3.3 <heart>, <heartbeat > attributes

<heart

[port="xxxx"] UDP port on which all the heartbeats are exchanged. Default:

depends on the id of the application module. Returned by the

safekit module getports command.

[pulse="700"] The delay, in milliseconds, between two heartbeat packets.

Default value: 700 ms

[timeout="30000"] Timeout value for heartbeat loss detection.

Default value: 30 000 ms

<heartbeat Definition of one heartbeat. There are as many <heartbeat> tags

as there are networks used to probe servers’ mutual connectivity.

At least one heartbeat must be defined.

[port="xxxx"] Redefines the UDP port for the heartbeat. Default value is the

same as the one defined in <heart> tag.

[pulse="700"] Redefines the delay in milliseconds between two heartbeat

packets. Default value is the same as the one defined in <heart>

tag.

[timeout=

"30000"]
Redefines the timeout value for heartbeat loss detection. Default

value is the same as the one defined in <heart> tag.

name="network" Network named used by the heartbeat. network must be the

name of a network set into the SafeKit cluster configuration (for

details, see 12 page 227).

This attribute is mandatory in new config syntax (since SafeKit

7.2).

 Userconfig.xml for a module configuration

39 A2 19MC 01 241

[ident="name"] Set how the heartbeat will be labelled in the web console and in

internal “resources”, i.e.: The internal resource heartbeat.name

can be used in the failover machine described in 13.18 page 288.

If no ident attribute is present the value of the name attribute will

be used.

ident="flow" is a reserved name associated with a

heartbeat declared on a replication flow. If you set a

heartbeat with ident="flow", automatically the

replication flow will be set on the same network.

If you set ident="flow" without <rfs> configuration,

the module start blocks in WAIT state.

[permanent_arp=

"on"|"off"]
Regularly, heart sets a permanent ARP entry for the ip addresses

associated with the heartbeats.

On some Linux systems, it may cause heart to freeze. Set this

parameter to off in this case and manually set permanent arp

for the remote server on boot. On Linux, this can be done by

inserting the following line into a script that is executed at boot:

arp -s hostname hw_addr

Default value: on

[<server addr=

"IP1_address />]
Definition of the server address in the heartbeat.

The <server> tag is a legacy syntax used in previous SafeKit

version (before SafeKit 7.2). It’s supported for compatibility

reason but must not be used for new modules.

In the same userconfig.xml, you must not use the

syntax for SafeKit 7.1 and the one for SafeKit 7.2.

13.4 Farm topology (<farm>, <lan> tags)

The basic mechanism to synchronize a farm of servers is a group communication protocol

which automatically detects the available members of the farm. Normally, the

membership protocol is configured on all networks connecting the N servers.

13.4.1 <farm> example

<farm>

 <lan name=”default” />

 <lan name=”net2” />

</farm>

For examples of <farm> configuration, see section 15.5 page 304.

SafeKit User's Guide

242 39 A2 19MC 01

13.4.2 <farm> syntax

<farm [port="xxxx"]>

 <lan name=”network” >

 [<!-- syntax for SafeKit < 7.2 -->

 <node name="server1" addr="IP1_address" />

 <node name="server2" addr="IP2_address" />

]

 </lan>

 …

</farm>

The <farm> tag and subtree cannot be changed with a dynamic

configuration.

13.4.3 <farm>, <lan> attributes

<farm Begin the definition of a farm topology.

[port="xxxx"] UDP port with which the membership protocol is exchanged.

Default: depends on the id of the application module. Returned

by the command safekit module getports.

[pulse=”xxxx”] The period of the membership protocol messages emission.

Longer pulse makes the membership protocol use less bandwidth

but reacts more slowly.

[mlost_count=”xx”] Number of periods elapsed without message before electing a

new leader.

[slost_count=”xx”] Number of periods elapsed without messages before declaring a

follower node offline.

<lan Definition of a LAN (i.e., IPv4 broadcast domain, IPv6 link) on

which the membership protocol will be transmitted. At least one

LAN must be defined. Define one such tag per used LAN.

name="network" Define the name of network used. network must be the name of

a network set into the SafeKit cluster configuration (see 12 page

227).

This attribute is mandatory in new config syntax (since SafeKit

7.2).

[<node

name=”identity”

addr=

"IP1_address" />]

Address and name of the node on this lan. The node tag is a

legacy syntax used in previous SafeKit version (before SafeKit

7.2). It’s supported for compatibility reason but must not be used

for new modules.

In the same userconfig.xml, you must not use the

syntax for SafeKit 7.1 and the one for SafeKit 7.2.

 Userconfig.xml for a module configuration

39 A2 19MC 01 243

13.5 Virtual IP address (<vip> tag)

If you install and run several application modules on the same server, the

virtual IP addresses must be different for each application module.

13.5.1 <vip> example in farm architecture

The following example configures load balancing to port 80 and virtual IP address

between nodes in an on-premises cluster:
<vip>

 <interface_list>

 <interface check="on" arpreroute="on" arpinterval="60" arpelapse="10">

 <virtual_interface type="vmac_directed">

 <virtual_addr addr="192.168.1.222" where="alias" check="on"/>

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="FarmProto">

 <rule port="80" proto="tcp" filter="on_port"/>

 </group>

 </loadbalancing_list>

 </vip>

See also the example in section 15.2 page 301.

13.5.2 <vip> example in mirror architecture

The following example configures the virtual IP address on the primary node of an on-

premises cluster:
<vip>

 <interface_list>

 <interface check="off" arpreroute="on">

 <real_interface>

 <virtual_addr addr="192.168.1.222" where="one_side_alias"

check="on"/>

 </real_interface>

 </interface>

 </interface_list>

 </vip>

See also the example in 15.1 page 300.

13.5.3 Alternative to <vip> for servers in different networks

The configuration of a virtual IP address with a <vip> section in userconfig.xml

requires servers in the same IP network (network rerouting and load balancing made at

level 2).

If servers are in different IP networks, the <vip> section cannot be configured. In this

case, an alternative is to configure the virtual IP in a load balancer. The load balancer

routes packets to the physical IP addresses of servers by testing an URL status named

health check and managed by SafeKit.

SafeKit User's Guide

244 39 A2 19MC 01

So, SafeKit provides a health check for SafeKit modules. For this, configure the health

check in the load balancer with:

 HTTP protocol

 port 9010, the SafeKit web service port

 URL /var/modules/AM/ready.txt, where AM is the module name

In a mirror module, the health check:

 returns OK, that means that the instance is healthy, when the module state is

 PRIM (green) or ALONE (green)

 returns NOT FOUND, that means that the instance is unhealthy, in all other states

In a farm module, the health check:

 returns OK, that means that the instance is healthy, when the farm module state

is UP (green)

 returns NOT FOUND, that means that the instance is out of service, in all other

states

Another alternative is that you implement a special DNS configuration and a DNS

rerouting command inserted in the SafeKit restart scripts.

13.5.4 <vip> syntax

13.5.4.1 Virtual IP loadbalancing in farm architecture

<vip [tcpreset="off"|"on"]>

 <interface_list>

 <interface

 [check="off"|"on"]

 [arpreroute="off"|"on"]

 [arpinterval="60"]

 [arpelapse="1200"]

 >

 <virtual_interface

 [type="”vmac_directed”|”vmac_invisible”]

 [addr="xx:xx:xx:xx:xx"]

 >

 <virtual_addr

 addr="virtual_IP_name"|"virtual_IP_address"

 [where="alias"]

 [check="off"|"on"]

 [connections="off"|"on"]

 />

 …

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="group_name"

 <cluster>

 <host name="node_name" power="integer" />

 Userconfig.xml for a module configuration

39 A2 19MC 01 245

 …

 </cluster>

 <rule

 [virtual_addr="*"|"virtual_IP_name"|"virtual_IP_address"]

 [port="*"|"value"]

 proto="udp"|"tcp"

 filter="on_addr"|"on_port"|"on_ipid"

 />

 …

 </group>

 …

 </loadbalancing_list>

</vip>

The <vip> tag and subtree cannot be changed with a

dynamic configuration.

13.5.4.2 Virtual IP failover in mirror architecture

For on-premises SafeKit cluster:

<vip [tcpreset="off"|"on"]>

 <interface_list>

 <interface

 [check="off"|"on"]

 [arpreroute="off"|"on"]

 [arpinterval="60"]

 [arpelapse="1200"]

 >

 <real_interface>

 <virtual_addr

 addr="virtual_IP_name"|"virtual_IP_address"

 where="one_side_alias"

 [check="off"|"on"]

 [connections="off"|"on"]

 />

 …

 </real_interface>

 </interface>

 …

 </interface_list>

</vip>

13.5.5 <vip><interface_list>, <interface>, <virtual_interface>,

<real_interface>, <virtual_addr> attributes

<vip

SafeKit User's Guide

246 39 A2 19MC 01

[tcpreset="off"|"on"] Before unconfiguring the virtual IP address, all

connections with the virtual IP address as IP source are

reset. The reset is disabled when set to off.

Default value: on

<interface_list>

<interface Definition of an interface with virtual IP addresses.

Define as many <interface> sections as there are

network interfaces to configure.

[check="off"|"on"] Set an interface checker on the interface to stop the

service and put it in the WAIT state when the interface is

down. The name of the interface checker is

intf.<network_IP_mask> (intf.192.168.0.0).

Default value: on

For more information, see 13.13 page 281.

[arpreroute="off"|"on"] Automatically broadcast gratuitous ARP on virtual IP

addresses defined in <real_interface> section.

Default value: off.

[arpinterval="60"] Time in seconds between two gratuitous ARP.

Default value: 60 s

[arpelapse="1200"] Time during which gratuitous ARP are sent.

Default value: 1200 s

[name="interface name"] Linux only.

You can specify the name of the network interface on

which the virtual IP addresses will be set.

Ex.: name="bond0"

Default: no value, SafeKit detects the network

interface with virtual IP addresses set on it.

13.5.5.1 <virtual_interface>, <virtual_addr> attributes in farm architecture

Use with farm modules for virtual IP load-balancing:

<virtual_interface Definition of virtual IP addresses configured on an

Ethernet interface.

type=

"vmac_directed"|

"vmac_invisible"

vmac_directed: advertise the MAC address of one of

the servers as the associated mac address, as with

normal traffic. No promiscuous mode needed. For

details, see 13.5.7.3 page 250.

vmac_invisible: virtual MAC address never visible in

Ethernet headers to allow broadcasting of switch.

file:///C:/LocalSandbox/safekit_docs/src/docs/Manual_7_5_0/UserGuide/safekit75userguideen.doc%23_Interface_Checker_(%3ccheck%3e,
file:///C:/LocalSandbox/safekit_docs/src/docs/Manual_7_5_0/UserGuide/safekit75userguideen.doc%23_What_is_the

 Userconfig.xml for a module configuration

39 A2 19MC 01 247

Needs promiscuous mode. For details, see 13.5.7.2

page 250

Note: can be used for a mirror module with a need of

transparent rerouting.

[addr="xx:xx:xx:xx:xx"] Unicast virtual MAC address value.

If not set, default is the concatenation of "5A:FE"

(Safe) and the first configured virtual IP address in

hexadecimal. Ignored in vmac_directed mode.

<virtual_addr Definition of one Virtual IP address. Set as many

<virtual_addr> sections as there are virtual IP

addresses on the interface.

addr="virtual_IP_name"|

"virtual_IP_address"

Name or address of the virtual IP (prefer an IP address

to be independent from the name server).

IPv4 or IPv6 address.

where="alias" Configuration for farm module: the virtual IP address is

defined on all servers as an alias IP address.

Load balancing rules apply only for this type of virtual

IP addresses.

Note : when VMAC is used with a mirror module, set

here where="one_side_alias"

[check="off"|"on"] Defines an ip checker on the virtual IP address to

stopstart the module when the virtual IP is deleted or

in conflict. The name of the ip checker is ip.<addr

value> (ip.192.168.1.99).

Default value: on

For more information, see 13.14 page 282

[connections="off"|"on"] Enables counting of the number of active connections

on the virtual address. This count is stored in the

resource named connections.<virtual addr value>

(for example: connections.192.168.1.99) which is

assigned every 10 seconds. This value is provided as a

guideline only.

Default value: off

netmask="defaultnetmask" Linux and IPV4 only. By default, the netmask of the

network interface on which the virtual IP address is

set.

Set the netmask if there are several netmasks on the

interface.

</virtual_interface>

file:///C:/LocalSandbox/safekit_docs/src/docs/Manual_7_5_0/UserGuide/safekit75userguideen.doc%23_What_is_the_1
file:///C:/LocalSandbox/safekit_docs/src/docs/Manual_7_5_0/UserGuide/safekit75userguideen.doc%23_IP_Checker_(%3cip%3e_1

SafeKit User's Guide

248 39 A2 19MC 01

13.5.5.2 <real_interface>, <virtual_addr> attributes in mirror architecture

Use with mirror modules for virtual IP failover:

<real_interface> Definition of virtual IP addresses associated with the

real MAC address of the interface.

<virtual_addr Definition of one virtual IP address. Set as many

virtual_addr sections as there are virtual IP

addresses on the interface.

addr=

"virtual_IP_name"|

"virtual_IP_address"

Name or address of the virtual IP (prefer an IP address

to be independent from the name server).

IPv4 or IPv6 address.

where="one_side_alias" The Virtual IP address will be aliased on the server on

which the module becomes PRIM or ALONE.

[check="off"|"on"] Defines an ip checker on the virtual IP address to

stopstart the module when the virtual IP is deleted or

in conflict. The name of the ip checker is ip.<addr

value> (ip.192.168.1.99).

Default value: on

For more information, see 13.14 page 282.

[connections="off"|"on"] Enables counting of the number of active connections

on the virtual address. This count is stored in the

resource named connections.<virtual addr value>

(for example: connections.192.168.1.99) which is

assigned every 10 seconds. This value is provided as a

guideline only.

Default value: off

netmask="defaultnetmask" Linux and IPV4 only. By default, the netmask of the

network interface on which the virtual IP address is

set.

Set the netmask if there are several netmasks on the

interface.

</real_interface>

13.5.6 <loadbalancing_list>, <group>, <cluster>, <host> attributes

For load-balancing examples, see 15.5 page 304.

Use with farm module.

<loadbalancing_list>

file:///C:/LocalSandbox/safekit_docs/src/docs/Manual_7_5_0/UserGuide/safekit75userguideen.doc%23_IP_Checker_(%3cip%3e_1

 Userconfig.xml for a module configuration

39 A2 19MC 01 249

<group Definition of a load balancing group. Define as many

sections as there are groups. An example is given in

15.5.3 page 305.

name="group_name" Name of the load balancing group.

<cluster Definition of the server set on which the load current

group balancing will be applied. If no <cluster> section

is defined, the rules apply to all servers of the farm.

<host Definition of one node in the cluster. Define as many

hosts sections as there are nodes configured for the

module.

name = "node_name" Define the name of the host. node_name must be the

name of a node name set into the SafeKit cluster

configuration (see 12 page 227).

power = "value" Relative weight to apply to the current node in this load

balancing group’s cluster. Can be equal to 0, which

means no traffic will be dispatched to this node. See

section 13.5.7.4 page 250 for more information.

</cluster>

<rule Definition of a load balancing rule for the group. Define

as many sections as there are load balancing rules for

this group.

[virtual_addr=

"*" |

"virtual_IP_address"|

"virtual_IP_name"]

Virtual IP name or address scope of the rule.

By default, all virtual IP addresses: *

[port="*"|"value"] TCP or UDP port to which the load balancing rule applies.

By default, all ports: *

proto="udp" | "tcp" |

"arp"

proto="udp"

Load balancing rule applies to the UDP protocol.

proto="tcp"

Load balancing rule applies to the TCP protocol.

proto="arp"

Load balancing rule applies to the IP<->MAC resolution

protocol (arp or neighbour discovery)

filter="on_addr" |

"on_port" |

"on_ipid"

filter="on_addr"

Load balancing criteria is the source IP address (client,

far end of the connection) (see 15.5.1 page 304).

filter="on_port"

Load balancing criteria is the source port (client, far end

of the connection) (see 15.5.1 page 304).

filter="on_ipid"

Load balancing is made on the client ip_id at input.

SafeKit User's Guide

250 39 A2 19MC 01

Useful for UDP. No sense for TCP and for IPv6 addresses

(see example in 15.5.2 page 305).

13.5.7 <vip> Load balancing description

13.5.7.1 <vip> prerequisites

See network prerequisites described in 2.3.2 page 30.

13.5.7.2 What is the vmac_invisible type?

When type=“vmac_invisible”, a virtual MAC address is mapped on the virtual IP

address with a unicast MAC Ethernet address on several network nodes. When a network

device tries to resolve the virtual IP address into its corresponding MAC address, the

SafeKit servers respond with the virtual MAC address. However, SafeKit servers use its

physical MAC address to communicate. To “see” the packets sent to the virtual MAC

address the interface is set to promiscuous mode. So, the virtual MAC address is invisible

to layer 2 network devices. Ethernet switches therefore forward virtual MAC address

directed packets to all the ports in the same vlan as the source, reaching all the servers

of the farm. A kernel module running on each farm server is responsible for filtering out

the packets that should not be processed by a given farm node, according to the load

balancing rules defined.

With the virtual MAC address technology, the failover time is null. There is no network

rerouting after a failure: all network equipment keeps their mapping virtual IP address,

virtual MAC address.

To test a virtual MAC address in your network, see 4.3.7 page 84

13.5.7.3 What is the vmac_directed type?

When type=“vmac_directed”, there is in fact no virtual MAC address. Farm servers

reply to virtual IP resolution requests with their own physical MAC address. A kernel

module running on each farm server is responsible for filtering and dispatching the

packets to their designated target farm node according to the load balancing rules

defined. In vmac_directed mode there is a short failover time for clients that have

resolved the virtual IP address as the MAC address of the failed server. This is

comparable to what happens in “real interface” mode. Clients that have another farm

server’s MAC address in their cache are not affected.

To help minimize failover time in ipv4, set the arpreroute attribute to “on” on the

corresponding “<interface>” tag, and tune the arpelapse and arpinterval attributes to the

desired values. Ipv6 does not need arpreroute, it has a built-in mechanism that takes

care of the failover.

13.5.7.4 How does load balancing work?

On all the servers of the farm, the load balancing algorithm filters received packets

according to the identity of the sender. The criteria to check is defined by configuration in

userconfig.xml: client IP address, client port… (i.e.: level 3 load balancing), or

requestor address (arp rules, i.e., level 2 load balancing). The criteria are hashed into a

value representing the server on which the packet is to be accepted.

 Userconfig.xml for a module configuration

39 A2 19MC 01 251

When a server fails, the membership protocol reconfigures the filters to re-balance the

traffic of the failed server on the available servers.

Each server can have a power (=1, 2…) and then takes more or less traffic. The power is

implemented by the number of bits set to 1 in the hash table (a bitmap of 256 bits).

A bitmap example is given in 4.3.5 page 82.

13.6 File replication (<rfs>, <replicated> tags)

For mirror modules only.

In Linux, you must set the same value for uid/gid on the two nodes for replicating file

permissions. When replicating a filesystem mount point, you must apply a special

procedure described in 13.6.4.2 page 259.

In Windows, it is strongly recommended to enable the USN journal on the drive that

contains the replicated directory as described in 13.6.4.3 page 261.

If you install and run several application modules on the same server, the

replicated directories must be different for each application module.

13.6.1 <rfs> example

Example in Windows:

<rfs async="second">

 <replicated dir="c:\safedir" mode="read_only"/>

</rfs>

Example in Linux:

<rfs async="second">

 <replicated dir="/safedir" mode="read_only"/>

</rfs>

See also the example in 15.4 page 303.

13.6.2 <rfs> syntax

<rfs

 [acl="on"|"off"]

 [async="second"|"none"]

 [iotimeout="nb seconds"]

 [roflags="0x10"|"0x10000"]

 [locktimeout="100"]

 [sendtimeout="30"]

 [nbrei="3"]

 [ruzone_blocksize="8388608"]

 [namespacepolicy="0"|"1"|"3"|"4"]

 [reitimeout="150"]

 [reicommit="0"]

 [reidetail="on"|"off"]

SafeKit User's Guide

252 39 A2 19MC 01

 [allocthreshold="0"]

 [nbremconn ="1"]

 [checktime="220000"]

 [checkintv="120"]

 [nfsbox_options="cross"|"nocross"]

 [scripts="off"]

 [reiallowedbw=”20000”]

 [syncdelta=”nb minutes”]

 [syncat=”synchronization scheduling”]

>

 [<flow name=”network” >

 [<!-- syntax for SafeKit < 7.2 -->

 <server addr="IP_address_1" />

 <server addr="IP_address_2" />

]

 </flow>]

 <replicated dir="absolute path of a directory"

 [mode="read_only"]

>

 <tocheck path="relative path of a file or subdir" />

 <notreplicated path="relative path of a file or subdir" />

 <notreplicated regexpath="regular expression on relative path of a file or

subdir" />

 …

 </replicated>

</rfs>

Only async, nbrei, reitimeout and reidetail

attributes of <rfs> tag can be changed with a dynamic

configuration. The <flow> tag, describing the replication

flow, can also be changed dynamically.

13.6.3 <rfs>, <replicated> attributes

<rfs

[mountoversuffix

= "suffix"]
Linux only.

During the module configuration, the replicated directory "/a/dir"

is renamed "/a/dirsuffix". The directory /a/dir is created and it

is:

 a mount point to /a/dirsuffix when the module is started

 a link to "/a/dirsuffix" when the module is stopped

 By default, suffix value is “_For_SafeKit_Replication”.

If there is a hard failure, then the symbolic link will not

be restored. In this case, you must restore the symbolic

link manually.

 Userconfig.xml for a module configuration

39 A2 19MC 01 253

Restriction

You cannot directly specify a root file system as a

replicated directory (because of the directory rename

that is not allowed across a file system). The work

around is to manipulate the fstab file as described in

a KB on https://support.evidian.com.

When the module is started, NEVER ACCESS files in

"/a/dirsuffix", otherwise the modifications will not be

replicated, and the system will become inconsistent.

ALWAYS ACCESS replicated files through "/a/dir".

[acl=

"on" | "off"]
Setting acl to on activate the replication of ACL on files and

directories.

Default value: off

Restrictions for Windows

ACL replication will not work if the SYSTEM account does

not have the "Full control" access right on all the

replicated forest.

File ACLs are replicated literally (as SID values),

therefore ACL granted to locally defined users and

groups will be meaningless on the remote system.

File encryption and file compression attributes are not

supported.

[async=

"second" |

"none"]

Setting async mode to second is a way to improve file replication

performances: modification operations are cached on the secondary

server and the acknowledgements are sent more quickly to the

primary server.

Setting async mode to none ensures more robustness: modification

operations are put on disk of the secondary before sending

acknowledgement to the primary.

With async="second", in case of double failure at the same time of

both PRIM and SECOND servers, if the PRIM server cannot restart,

then the SECOND server does not have up-to-date data on its disk.

There is data loss if the SECOND server is forced to start as primary

with the prim command.

Default value: second

This attribute’s value can be changed with a dynamic

configuration.

[packetsize] Linux only.

Maximum size in bytes for NFS replication packets. It must be lower

than the maximum size allowed by the NFS server of both servers.

https://support.evidian.com/

SafeKit User's Guide

254 39 A2 19MC 01

When it is set into the configuration, it is used as mount options for

rsize and wsize.

By default, the size is the one of the NFS server.

[reipacketsize="

8388608"]
Maximum size in bytes of reintegration packets.

In Linux, this value must be less or equal to packetsize.

Default value in Linux: value of packetsize if it is set into the

configuration and is lower than 8388608; else 8388608

Default value in Windows: 8388608 bytes

[ruzone_blocksiz

e="8388608"]
Size of a zone for the modification bitmap of a file.

It must be a multiple of reipacketsize attribute.

Default value: value of reipacketsize if it is set into the

configuration; else 8388608

[iotimeout] Windows only.

IO time out in seconds in the Windows file system filter. If an IO

cannot be replicated and if the timeout expires in the filter, then the

PRIM server becomes ALONE.

If not set, the default value is dynamically calculated.

[roflags="0x10"|

"0x10000"]

Windows only.

To ensure the consistency of the data replicated on the 2 servers,

the modification of the replicated directories/files must only take

place on the PRIM server. If changes are made on the SECOND

server, they are notified in the module log with the identification of

the process responsible so that the administrator can correct this

anomaly. This is the behavior with roflags="0x10".

Since SafeKit 7.4.0.31, the module can also be stopped on the

SECOND server by setting roflags="0x10000".

Default value: 0x10

[locktimeout=

"100"]
Timeout in seconds for replication requests. If a request cannot be

served within this timeout, the PRIM server becomes ALONE.

Default value: 100 seconds

[sendtimeout=

"100"]
Since SafeKit > 7.4.0.5

Timeout in seconds for sending TCP packets to the remote node. If

a packet cannot be sent within this timeout, the PRIM server

becomes ALONE. Increase this value in case of low networks.

Default value: 30 seconds

In SafeKit 7.4.0.5, the default value was 12O seconds.

[nbrei="3"] Number of reintegration threads running in parallel for

resynchronizing files.

 Userconfig.xml for a module configuration

39 A2 19MC 01 255

Default value: 3

This attribute’s value can be changed with a dynamic

configuration.

[namespacepolicy

="0"|"1"|"3"|"4"

]

In Windows, with namespacepolicy="1", zone reintegration after

reboot when the module has been properly stopped is not active.

To enable it in Windows, set namespacepolicy="3". It activates

the USN change journal on the volume containing the replicated

directories (see fsutil usn command for creating USN change

journal on a volume). Even with this configuration, full reintegration

is used instead of zone reintegration when:

 the USN change journal associated with the volume has been

deleted/recreated for administration reasons

 discontinuity in the USN journal is detected

When zone synchronization is not possible (on the first reintegration

or when zones are not available), the files that need to be

synchronized are fully copied. If this reintegration does not

complete, the next one will copy again these files. To avoid this, set

namespacepolicy="4". This option also enables USN journal

checking in Windows.

Set namespacepolicy="0" to deactivate the zone reintegration on

Windows or Linux.

 Default value: 4 since SafeKit > 7.4.0.5 (not supported in previous

releases)

[reitimeout=

"150"]
Timeout in seconds for reintegration requests. The timeout can be

increased to avoid reintegration failure on heavy load of the primary

server.

Default value: 150 seconds

This attribute’s value can be changed with a dynamic

configuration.

[reicommit="0"] Linux only.

Set reicommit="nb blocks" to commit every (nb blocks)*

reipacketsize when reintegrating one file (in addition to the

commit at the end of the copy). This can help to succeed

reintegration of big files but slows down reintegration time.

Default value: 0 that means no intermediate commit

[reidetail=

"on"|"off"]
Detailed logging for reintegration.

Default value: off

SafeKit User's Guide

256 39 A2 19MC 01

This attribute’s value can be changed with a dynamic

configuration.

[allocthreshold=

"0"]
Windows only.

Size in Gb to apply the allocation policy before reintegration.

When allocthreshold> 0, enable fast allocation of disk space for

files to be synchronized on the secondary node. This feature avoids

a timeout when the primary writes at the end of the file, when the

file is very large (> 200 Gb) and not yet completely copied.

Since SafeKit 7.4.0.64, the allocation policy has changed and is

applied for:

 Newly created file or already existing empty file on the

secondary and the file size on the primary is >=
allocthreshold

or

 Newly created file or already existing file on the secondary

and the primary file size – secondary file size is >=

allocthreshold and the file needs full synchronization. Full

synchronization is applied on the first reintegration; on start

with full synchronization (safekit second fullsync) ; or

when synchronization by zones is disabled

(namespacepolicy=”0”)

Default value: 0 (that disables the feature)

[nbremconn="1"] Number of TCP connections between the primary and the secondary

nodes.

This value may be increased to improve the replication and

synchronization throughput when the network has high latency (in

cloud for instance).

Default value: 1

[checktime=

"220000"]
Linux only.

Timeout in milliseconds for the null request that checks the local

replicated file system. Run the safekit stopstart command when

the timeout is reached.

Default value: 220 000 milliseconds

[checkintv=

"120"]
Linux only.

Interval in seconds between two null requests.

Default value: 120 seconds

nfsbox_options="

cross"|"nocross"
Windows only.

It specifies the policy to apply when a reparse point of type

MOUNT_POINT is present in the replicated directory tree. This policy

applies to all replicated directories.

 Userconfig.xml for a module configuration

39 A2 19MC 01 257

MOUNT_POINT reparse points in NTFS can represent two types of

objects: an NTFS mount point (for example the D:\ directory) or

an NTFS "directory junction" (a form of "symbolic link" to another

part of the file system namespace).

When nfsbox_options="cross", the MOUNT_POINT reparse point

object itself is not replicated/reintegrated. It is evaluated, and the

reintegration/replication process the target content as it would do

for the content of a standard directory. This is useful for instance

when a replicated directory is a mount point (e.g., replicating a

"drive letter" root). This is the default configuration value.

When nfsbox_options="nocross", the MOUNT_POINT reparse point

object itself is replicated/reintegrated, but not evaluated.

Reintegration does not descend into the target of the reparse point.

This is useful for instance when a replicated directory tree contains

NTFS "junctions" that point to another part of the replicated tree

(e.g., when replicating a PostgreSQL database, as PostgreSQL is

known to need such objects).

Default value: cross

[scripts=

"on" | "off"]
scripts="on" activates _rfs_* script callbacks used to implement

external data replication management (see Linux drbd.safe module

for more information)

Default value: off

[reiallowedbw=”2

0000”]
When defined, this attribute specifies the maximum bandwidth that

the reintegration phase may use (for instance 20000 KB/s), in kilo

bytes per second (KB/s).

Due to implementation trade-off, a +/-10% fluctuation of the

effectively used bandwidth is to be expected.

The replication bandwidth is not affected by this

parameter.

By default, the attribute is not defined, and the bandwidth used by

the reintegration is not limited

[syncdelta=”nb

minutes”]
When <=1, the attribute is ignored and the default failover and

start policy is applied: only an up-to-date server can start as

primary or run a failover.

When >1, it changes the default failover and start policy. The not

up-to-date server can become primary but only if the elapsed time,

in minutes, since the last synchronization is lower than the

syncdelta value (see 13.6.4.4 page 261).

Default value: 0 minutes

[syncat="synchro

nization

scheduling"]

Default: real-time replication and automatic synchronization (no

scheduling)

Use syncat for scheduling the synchronization of replicated

directories on the secondary node (see 13.6.4.10 page 268). The

module must be started for enabling this feature. Once

SafeKit User's Guide

258 39 A2 19MC 01

synchronized, the module blocks in the WAIT (red) state until the

next synchronization.

The scheduling is based on native job scheduler:

 On Unix, the job is defined in the safekit user’s crontab

 On Windows, the job is defined as a system task

 You must configure syncat with the syntax of the native job

scheduler. For instance, for synchronizing daily, after midnight:

 in Windows

syncat="/SC DAILY /ST 00:01:00"

 in Unix

syncat="01 0 * * *"

See crontab documentation in Unix and schtasks.exe

documentation in Windows, for the full syntax of

scheduled date and time.

Since SafeKit configuration is just a front end to the

job scheduler, when scheduling is not working, please

check first for syntax errors.

[<flow name

=”network”>

 [<server

addr="IP_1" />

<server

addr="IP_2" />]

 </flow>]

Obsolete configuration preserved for backwards compatibility.

When this section is not defined, the replication flow uses the same

network as the heartbeat with ident="flow" if there is one, if not it

uses the first heartbeat (see 13.3 page 239).

If you define this section, be coherent with heartbeat

ident="flow", if there is one, because default failover rules apply

to this heartbeat (see 13.18.5 page 290).

This <flow> tag subtree can be changed with a dynamic

configuration for setting a new replication flow for

instance.

The name attribute of <flow> define the network used for

replication flow. It must present in global cluster configuration (see

12 page 227).

The <server> tag is a legacy syntax used in previous SafeKit

version (before 7.2). It’s supported for compatibility reason but

must not be used for new modules.

In the same userconfig.xml, you must not use the

syntax for SafeKit 7.1 and the one for SafeKit 7.2.

<replicated Begin the definition of replicated directories.

Set as many lines as there are replicated directories.

 Userconfig.xml for a module configuration

39 A2 19MC 01 259

dir="/abs_path" Absolute path of a directory to replicate.

[mode=

"read_only"]
Read-only access rights on the secondary machine for replicated

directories to avoid corruption

<notreplicated

path="relative"

/>

Relative path of a file or sub-directory in a replicated directory. The

file (or sub-directory) is not replicated. Set as many lines as there

are non-replicated files or sub-directories.

<notreplicated

regexpath="regul

ar expression"

/>

Linux only.

Regular expression to define non-replicated files or sub-directories

in the replicated directory.

Example (for more information, type "man regex"):

<replicated dir="/safedir">

<notreplicated regexpath=".*\.tmp" />

</replicated>

In this example, /safedir/conf/config.tmp and /safedir/log.tmp are

not replicated while /safedir/conf/config.tmp.bak is replicated.

<tocheck

path="relative"

/>

Relative path of a file or sub-directory in a replicated directory.

Checks the presence of the file or sub-directory before starting the

replication mechanism. Avoids errors such as starting replication on

an empty file system. Set as many lines as there are files or sub-

directories to check.

13.6.4 <rfs> description

13.6.4.1 <rfs> prerequisites

See file replication prerequisites described in 2.2.4 page 29.

13.6.4.2 <rfs> Linux

On Linux, interception of data is based on a local NFS mount. And the replication flow

between servers is based on NFS v3 / TCP protocol.

The NFS mount of replicated directories from remote Unix clients is not supported. The

NFS mount of other directories can be made with standard commands.

Procedure for replicating a mount point

When replicating a mount point in Linux, the module configuration fails with the error:

Error: Device or resource busy

In the following, we take the example of PostgreSQL module that set as replicated

directories /var/lib/pgsql/var and /var/lib/pgsql/data. The userconfig.xml of the

module contains:

<rfs … >

 <replicated dir="/var/lib/pgsql/var" mode="read_only" />

 <replicated dir="/var/lib/pgsql/data" mode="read_only" />

</rfs>

These directories are mount points as shown by the result of the command df –H. It

returns for instance:

/dev/mapper/vg01-lv_pgs_var … /var/lib/pgsql/var

SafeKit User's Guide

260 39 A2 19MC 01

/dev/mapper/vg02-lv_pgs_data … /var/lib/pgsql/data

You must apply the following procedure for configuring the module to replicate these

directories.

It is the same procedure for all mounts points that must be replicated.

 umount the file systems by running the commands:

umount /var/lib/pgsql/var

umount /var/lib/pgsql/data

 configure the module by running the command:

/opt/safekit/safekit config –m postgresql

The configuration should succeed (no errors)

 check the symbolic links created by running the command ls -l /var/lib. It

returns:

lrwxrwxrwx 1 root var -> var_For_SafeKit_Replication

lrwxrwxrwx 1 root data -> data_For_SafeKit_Replication

 edit /etc/fstab and change the two lines:

/dev/mapper/vg01-lv_pgs_var /var/lib/pgsql/var ext4…

/dev/mapper/vg02-lv_pgs_data /var/lib/pgsql/data ext4…

with

/dev/mapper/vg01-lv_pgs_var

/var/lib/pgsql/var_For_SafeKit_Replication ext4…

/dev/mapper/vg02-lv_pgs_data

/var/lib/pgsql/data_For_SafeKit_Replication ext4..

 mount the file systems by running the commands:

mount /var/lib/pgsql/var_For_SafeKit_Replication

mount /var/lib/pgsql/data_For_SafeKit_Replication

Apply this procedure on both nodes if replicated directories are mount point on

both nodes. Once applied, you can use the module as usual: i.e., safekit start

stop etc ...

To protect the start of the module on a non-mounted and empty directory, you

can insert in userconfig.xml the checking of a file inside the replicated

directory. Example for /var/lib/pgsql/var (do the same for

/var/lib/pgsql/data with a file inside this directory which is always present):

<replicated dir="/var/lib/pgsql/var" mode="read_only">

 <tocheck path="postgresql.conf" />

</replicated>

 Userconfig.xml for a module configuration

39 A2 19MC 01 261

If you want to unconfigure the module (or uninstall whole SafeKit package), you must

reverse this procedure by:

 umount the file systems with:

umount /var/lib/pgsql/var_For_SafeKit_Replication

umount /var/lib/pgsql/data_For_SafeKit_Replication

 de-configure the module with /opt/safekit/safekit deconfig -m postgresql

 edit /etc/fstab to undo previous editing

 mount the file systems with:

mount /var/lib/pgsql/var

mount /var/lib/pgsql/data

13.6.4.3 <rfs> Windows

On Windows, interception of data is based on a file system filter. And the replication flow

between servers is based on NFS v3 / TCP protocol.

The <rfs> filter may not work correctly with some anti-viruses.

On Windows, you can mount remotely a replicated directory from a workstation. If you

want to mount with the virtual name instead of the digital virtual IP address, you must

set the two following registry keys on the server side:

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Control\Lsa]

"DisableLoopbackCheck"=dword:00000001

[HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\lanmanserver\paramete

rs] "DisableStrictNameChecking"=dword:00000001

In Windows, to enable zone reintegration after server reboot, when the module has been

successfully stopped, the <rfs> component uses the NTFS USN log to verify that the

information recorded on the zones is still valid after the reboot. When the control

succeeds, the zone reintegration can be applied to the file; otherwise, the file must be

fully copied.

By default, only the system drive has a USN log active. If the replicated directories are

located on a different drive than the system drive, you must create the log (with fsutil

usn command). See SK-0066 for an example.

13.6.4.4 <rfs> replication and failover

With its file-replication function, mirror architecture is particularly suitable for providing

high availability for back-end applications with critical data to protect against failure. The

reason is that the secondary server data is strongly synchronized with the primary server

data. A synchronized server is considered as up-to-date and only an up-to-date server

can start as primary or run a failover.

If the application availability is more critical than the application data, this default policy

can be relaxed by allowing a server to become primary if the time elapsed since the last

synchronization is below a configurable delay. This is configured by setting the

syncdelta attribute of the <rfs> tag:

 syncdelta <= 1

The attribute is ignored and the default failover and start policy is applied. The

default value is 0.

https://support.evidian.com/solutions/downloads/safekit/version_7.5/documentation/safekitknowledgebase.htm#SK-0066

SafeKit User's Guide

262 39 A2 19MC 01

 syncdelta > 1

When the last up-to-date server is not responding, the not up-to-date server can

become primary but only if the elapsed time since the last synchronization is

lower than the syncdelta value (in minutes).

This feature is implemented with:

 rfs.synced resource

When syncdelta is > 1, the rfs.synced resource is managed. This resource is UP

if the replicated data are consistent and if the elapsed time, in minute since the

last synchronization is lower than the syncdelta value.

 syncedcheck checker

When syncdelta is > 1, this checker is running. It sets the value for the

rfs.synced resource.

 rfs_forceuptodate failover rule

When syncdelta is > 1, the following failover rule is valid:

rfs_forceuptodate: if (heartbeat.* == down && cluster() == down &&

rfs.synced == up && rfs.uptodate == down) then rfs.uptodate=up;

This rule leads to the primary start of the server when the up-to-date server is not

responding and if the server is isolated and can be considered as synchronized

according to syncdelta value.

13.6.4.5 <rfs> replication verification

You can check for the module, named AM, that files are identical on the primary and the

secondary, by running the following command on the SECOND server: safekit

rfsverify –m AM. Run safekit rfsverify –m AM > log to redirect the command

output into the file named log.

This output of the command is a log like that of the reintegration in which the files to be

copied (therefore different) are indicated. When on the primary, there is activity on the

replicated directories, an anomaly may be detected while there is no difference between

the files in the following cases:

 on Windows because modifications are made on disk before being replicated

 with async="second" (default) because reads can bypass the asynchronous

writes.

To check if there is really an inconsistency, you must re-run the command on the

secondary server making sure that there is no more activity on the primary.

On Windows, some files are systematically seen as erroneous by the verifier while there

is no difference. This occurs when files are modified with SetvalidData: files are

extended without resetting the new extension and the reads return random data from

the disk.

It is strongly recommended to run this command only when there are no

accesses to the replicated directories on the primary.

 Userconfig.xml for a module configuration

39 A2 19MC 01 263

13.6.4.6 <rfs> file changes since the last synchronization

Before starting a secondary server, it may be useful to evaluate the number of files and

data that have been changed on the primary server since the secondary server has

stopped. This feature is provided by running the following command on the ALONE server:

safekit rfsdiff –m AM. Run safekit rfsdiff –m AM > log to redirect the command

output into the file named log.

This command runs on-line checks of regular files content of the module AM. It scans the

entire replicated tree and displays the number of files that have been modified as well as

the size that need to be copied. It also displays estimation for the synchronization

duration. This is only estimation since only regular files are scanned and some other

modifications may occur until the synchronization is run by the secondary server.

This command must be used with caution on a production server since it leads to an

overhead on the server (for reading trees and files with locking). On Windows, rename of

files can fail during the evaluation.

It is strongly recommended to run this command only when there are no

accesses to the replicated directories.

13.6.4.7 <rfs> replication and reintegration bandwidth

The replication component monitors, on the PRIM server, the bandwidth used by

replication and reintegration write requests.

Two resources (rfs.rep_bandwidth and rfs.rei_bandwidth) reflect the average

bandwidth used by replication and reintegration respectively during the last 3 seconds,

expressed in kilo bytes per second (KB/s).

In SafeKit < 7.5, these resources were named rfs_bandwidth.replication

and rfs_bandwidth.reintegration.

If the replication load is IO intensive, the reintegration phase may saturate the network

link and significantly slow down the application. In such a case, the <rfs> reiallowedbw

attribute may be used to limit the bandwidth taken by the reintegration phase (see

13.6.3 page 252). Please note that limiting the reintegration bandwidth will make the

reintegration phase longer.

Since SafeKit 7.5, there are 2 new resources that reflect the network bandwidth (in in

Kbytes/sec) used between nfsbox processes, that run on each node to implement

replication and reintegration:

 rfs.netout_bandwidth is the network output bandwidth

 rfs.netin_bandwidth is the network input bandwidth

You can observe the value of rfs.netout_bandwidth on the primary or

rfs.netin_bandwidth on the secondary to know the modification rate at the time of

observation (write, create, delete, …). The history of the resource values gives an

overview of its evolution over time.

The value of the bandwidth depends on the application, system, and network activity. Its

measurement is available for information purposes only.

SafeKit User's Guide

264 39 A2 19MC 01

13.6.4.8 <rfs> synchronization by date

SafeKit 7.2 offers a new command safekit secondforce –d date –m AM that forces the

module AM to start as secondary after copying only files modified after the specified date.

This command must be used with cautions since the synchronization will

not copy files modified before the specified date. It is the administrator’s

responsibility to ensure that these files are consistent and up-to-date.

The date is in the format of YYYY-MM-DD[Z] or "YYYY-MM-DD hh:mm:ss[Z]" or YYYY-

MM-DDThh:mm:ss[Z], where:

• YYYY-MM-DD indicates the year, month, and day

• hh:mm:ss indicates the hours, minutes, and seconds

• Z indicates that the time is in UTC time zone; when not set the time is in local

time zone

For instance:

• safekit secondforce -d 2016-03-01 –m AM for copying only files modified after

the 1st of March 2016

• safekit secondforce -d "2016-03-01 12:00:00" –m AM for copying only files

modified after the 1st of March 2016 at 12h, local time zone

• safekit secondforce -d 2016-03-01T12:00:00Z –m AM for copying only files

modified after the 1st of March 2016 at 12h, UTC time zone

This command may be useful in the following case:

• the module is stopped on the primary server and a backup of the replicated data

is done (on a removable drive for instance)

• the module is stopped on the secondary server and the replicated data is restored

from the backup. It may be the first start-up or the repair of the secondary

server.

• the module is started on the primary server that becomes ALONE

• the module is started on the secondary with the command safekit secondforce

–d date –m AM where the date is the backup date

In this case, only the files modified since the backup date will be copied (full copy),

instead of the full copy of all files.

In Windows, the file modification date on the secondary server is

changed when the file is copied by the synchronization process.

Therefore, safekit secondforce –d date –m AM, where date is prior

to the last reintegration on this server, has no interest.

13.6.4.9 <rfs> external synchronization

On the first synchronization, all replicated files are fully copied from the primary node to

the secondary node. During the following synchronizations, necessary when the

secondary node comes back, only zones modified, during the secondary downtime, of

 Userconfig.xml for a module configuration

39 A2 19MC 01 265

files that have been modified on the primary node during the secondary node downtime.

When the replicated directories are voluminous, the first synchronization can take a lot of

time especially if the network is slow. For this reason, since SafeKit> 7.3.0.11, SafeKit

provides a new feature to synchronize a large amount of data that must be used in

conjunction with a backup tool.

On the primary node, simply back up the replicated directories and pass the

synchronization policy to the external mode. The backup is transported (using an

external drive for instance) and restored to the secondary node, which is also configured

to perform external synchronization. When the module is started on the secondary node,

it copies only the file areas that were modified on the primary node since the backup

The external synchronization relies on a new SafeKit command safekit rfssync that

must be applied on both nodes to set the synchronization policy to external. This

command requires as arguments:

• the role of the node (prim | second)

• a unique identifier (uid)

External synchronization procedure

The external synchronization procedure, described below, is the procedure to be followed

in the case of a cold backup of the replicated directories. In this case, the application

must be stopped, and any modification of the replicated directories is prohibited until the

module and the application are started, in ALONE - green. The order of operations must

be strictly adhered to.

The external synchronization procedure, described below, is the procedure to be followed

in the case of a hot backup of replicated directories. In this case, the module is ALONE -

SafeKit User's Guide

266 39 A2 19MC 01

green; the application is started and changes to the contents of the replicated directories

are allowed. The order of operations must be strictly adhered to.

safekit rfssync command

 safekit rfssync

external prim <uid>

[–m AM]

Set the synchronization policy to external. It is identified

by the value of uid (at max 24 char).

The node is the primary one, the source for synchronizing

data.

safekit rfssync

external second <uid>

[–m AM]

Set the synchronization policy to external. It is identified

by the value of uid (at max 24 char).

The node is the secondary one, the destination for

synchronizing data

safekit rfssync –d

prim <uid> [–m AM]

safekit rfssync –d

second <uid> [–m AM]

Disable the replicated directories change detection between

the cold backup/restore and the start of the module.

Use this option with caution since the external

synchronization may not properly detect all

changes to be copied.

safekit rfssync full

[–m AM]

Set the synchronization policy to full. This will copy all

files in their entirety on the next synchronization.

 Userconfig.xml for a module configuration

39 A2 19MC 01 267

safekit rfssync Display the current synchronization policy

Internals

The synchronization policy is represented by module’s resources:

usersetting.rfssyncmode, usersetting.rfssyncrole, usersetting.rfssyncuid and

rfs.rfssync:

 usersetting.rfssyncmode=”default”

(usersetting.rfssyncrole=”default”, usersetting.rfssyncuid=”default”)

These values are associated with the standard synchronization policy, which is

applied by default. It consists of copying only the modified areas of the files.

When this policy cannot be applied, the modified files are copied in their entirety.

 usersetting.rfssyncmode=”full”

(usersetting.rfssyncrole=”default”, usersetting.rfssyncuid=”default”)

These values are associated with the full synchronization policy. It is applied:

o the first time the module is started after its first configuration

o on safekit commands (safekit second fullsync ; safekit rfssync

full ; safekit primforce ; safekit config ; safekit deconfig)

o on change of pairing for the module

The full synchronization policy will copy all files in their entirety on the next

synchronization.

 usersetting.rfssyncmode=”external”, usersetting.rfssyncrole=”prim |

second” and usersetting.rfssyncuid=”uid”

These values are associated with the external synchronization policy assigned

with the commands safekit rfssync external prim uid and safekit rfssync

external second uid. The next synchronization will apply the external

synchronization policy.

 rfs.rfssync=”up | down”

This resource is only up when the synchronization policy, defined by the previous

resources, can be applied.

When the synchronization policy is not the default policy, the synchronization policy

automatically returns to the default mode after successful synchronization.

In some cases, external synchronization cannot be applied, and the secondary node

stops with an error specified in the module log. In this situation, you must either:

 complete the external synchronization procedure if this has not been done in its

entirety on the 2 nodes

 fully reapply the external synchronization procedure on the 2 nodes

 revert to the full synchronization policy (safekit rfssync full command)

 apply the synchronization by date, using the date of the backup (see 13.6.4.8

page 264). Unlike external synchronization, synchronization by date will copy the

SafeKit User's Guide

268 39 A2 19MC 01

files, modified on the primary node, in their entirety (instead of just modified

parts).

13.6.4.10 <rfs> scheduled synchronization

By default, SafeKit provides real-time file replication and automatic synchronization. On

heavy loaded server or high latency network, you may want to let the secondary node

weakly synchronized. For this, you can use the syncat attribute for scheduling

replicated directories synchronization on the secondary node. The module must be

started for enabling this feature. Once synchronized, the module blocks in the WAIT

(red) state until the next synchronization schedule. It is implemented with:

 the resource rfs.syncat that is set to up on the scheduled dates and set to

down after the data synchronization

 the failover rule rfs_syncat_wait that blocks the module into the WAIT state

(red) until the rfs.syncat resource is up

If you want to manually force the synchronization, you can run the command: safekit

set –r rfs.syncat –v up –m AM while the module is in the WAIT (red) state.

With syncat, you just have to configure the scheduled time for the synchronization with

the syntax of the native job scheduler: crontab in Linux and schtasks.exe in Windows

(see 13.6.3 page 252).

13.7 Enable user scripts (<user>, <var> tags)

This section describes only the configuration options available for <user> tag. Refer to 14

page 293 for a full description of user scripts.

13.7.1 <user> example

<user logging="userlog" >

 <var name="VARENV" value="V1" />

</user>

See also the mirror module example in 15.1 page 300.

13.7.2 <user> syntax

<user

 [nicestoptimeout="300"]

 [forcestoptimeout="300"]

 [logging="userlog"|"none"]

 [userlogsize="2048"]

 >

 <var name="ENVIRONMENT_VARIABLE_1" value="VALUE_1" />

 …

</user>

The <user> tag and full subtree can be changed with a

dynamic configuration.

 Userconfig.xml for a module configuration

39 A2 19MC 01 269

13.7.3 <user>, <var> attributes

<user

[nicestoptimeout="300"] Timeout delay in seconds to execute the stop_xx script.

Default value: 300 seconds

[forcestoptimeout="300"] Timeout delay in seconds to execute the stop_xx –force

script.

Default value: 300 seconds

[logging="userlog"|"none"] stdout and stderr messages of the application started in

scripts.

When logging="userlog", messages are redirected

into the log SAFEVAR/modules/AM/userlog.ulog where

AM is the module name (SAFEVAR=C:\safekit\var on

Windows and SAFEVAR=/var/safekit on LINUX).

When logging="none", messages are not logged.

Default value: userlog

[userlogsize="2048"] Limit in KB of the size of the userlog

On module start, the file is truncated to 0 if the size has

reached this limit.

Default value: 2048 KB

 <var

 name="ENV_VARIABLE_1"

 value="VALUE_1" />

The environment variable and its value are exported

before the execution of user scripts. Define as many var

sections as there are environment variables to export.

13.8 Virtual hostname (<vhost>, <virtualhostname> tags)

13.8.1 <vhost> example

<vhost>

 <virtualhostname name="vhostname" envfile="vhostenv"/>

</vhost>

See also the example in 15.6 page 306.

13.8.2 <vhost> syntax

<vhost>

 <virtualhostname

 name="virtual_hostname"

 envfile="path_of_a_file"

 [when="prim"|"second"|"both"]

 />

</vhost>

SafeKit User's Guide

270 39 A2 19MC 01

The <vhost> tag and subtree cannot be changed with a

dynamic configuration.

13.8.3 <vhost>, <virtualhostname> attributes

<vhost>

<virtualhostname

name="virtual_hostname" Definition of the virtual hostname.

envfile="path_of_envfile" Path of the environment file automatically generated

by SafeKit during configuration command

If the path of the file is relative, the file will be

generated in the runtime environment of the

application module i.e.: SAFEUSERBIN

This generated environment file is used in user

scripts to set the virtual hostname before starting

and stopping the application. See the module

template vhost.safe delivered with Linux and

Windows package.

[when="prim"|"second"|"both"] Define when the virtual hostname must be returned

to the application instead of the physical one.

Default value: prim means when the server is

primary (PRIM or ALONE).

/>

</vhost>

13.8.4 <vhost> description

Some applications need to see the same hostname on all SafeKit servers (typically,

because it is stored in a replicated file). With the virtual hostname, these applications see

the virtual name whereas other applications see the physical name.

See 15.6 page 306 for a complete example.

 On Linux

Implementation is based on the LD_PRELOAD environment variable: gethostname and

uname functions are overloaded.

 On Windows

Implementation is based on the CLUSTER_NETWORK_NAME_ environment variable: the

query API (GetComputerName, GetComputerNameEx, gethostname) functions take this

variable into account. To use vhost for a service, use the command vhostservice

<service> [<file>] before/after the service start/stop.

 Userconfig.xml for a module configuration

39 A2 19MC 01 271

13.9 Process or service death detection (<errd>, <proc> tags)

<errd> section requires <user/> section.

13.9.1 <errd> example

13.9.1.1 Process monitoring

Linux and Windows, myproc is the command name of the process to monitor:

<errd>

 <proc name="myproc" atleast="1" action="restart" class="prim"/>

</errd>

Linux only (since SafeKit > 7.2.0.29), oracle_.* is a regular expression on the

command name of the process to monitor:

<errd>

 <proc name="oracle" nameregex="oracle_.*" atleast="1" action="restart"

class="prim"/>

</errd>

See also the example in 15.7 page 308.

13.9.1.2 Service monitoring

myservice is the name of the Windows service (since safekit > 7.3) or Linux systemd

service (since safekit > 7.4.0.19) to monitor:

<errd>

<proc name="myservice" service="yes" atleast="1" action="restart" class="prim" />

</errd>

13.9.2 <errd> syntax

<errd

 [polltimer="10"]

>

 <proc name="command name and/or resource name for the monitored process (or

service in Windows)"

 [service="no|yes"]

 [nameregex=="regular expression on the command name"]

 [argregex="regular expression on process arguments, including command

name"]

 atleast="1"

 action="stopstart"|"restart"|"stop"|"executable_name"

 class="prim"|"both|"pre"|"second"|"sec"|"othername"]

 [start_after="nb polling cycles"]

 [atmax="-1"]

 />

 …

</errd>

SafeKit User's Guide

272 39 A2 19MC 01

The <errd> tag and full subtree can be changed with a

dynamic configuration.

13.9.3 <errd>, <proc> attributes

<errd

polltimer="30" Time delay, in seconds, between two polls of the list of

processes.

Default value: 30 seconds

<proc Definition of a process to monitor. Set as many proc

sections as there are processes.

A resource is associated with each <proc>, it is named

proc.<value of the attribute name> (e. g

proc.process_name). The resource is up when the

monitoring condition is true; else down if false.

name="command_name"

Or

name="command_name"

nameregex="regular

expression on the command

name"

name is the command name of the process to monitor. It

is also the name of the resource associated with the

monitored process.

At max 15 characters in Linux (the command name can

be truncated); 63 in Windows.

Example: on Linux, name="vi" and on Windows

name="notepad.exe".

Windows only. The name is automatically

converted to lower case.

See 13.9.4 page 275 for help on retrieving the process

command name.

Linux only

nameregex is a regular expression applied on the

command name for selecting the process to monitor.

name is name of the resource associated with the

monitored process.

.

As regular expressions are defined inside the

XML file userconfig.xml, special characters

interpreted by XML like '<' or '>' cannot be

used in regular expressions.

Example: set nameregex="oracle _. *"

name="oracle" for monitoring oracle process that match

the regular expression

 Userconfig.xml for a module configuration

39 A2 19MC 01 273

Or

name="service_name"

service="yes"

The associated resource is proc.oracle

The nameregex attribute is optional

name is the name of the service to monitor. It is also the

name of the resource associated with the monitored

service.

At max 63 characters.

Example:

set name="W32Time" service="yes" for monitoring the

Windows Time service

set name="ntpd" service="yes" for monitoring the

Linux Time service (systemd ntpd.service)

The service attribute is optional, and the default value

is no

class=

"prim"|

"both"|

"pre"|

"second"|

"sec"|

"othername"

The process belongs to a class.

The monitoring of a class starts only when the command

safekit errd enable "classname" -m AM is executed.

Activation/deactivation of prim, both, pre, second, and

sec classes are automatically done by SafeKit in the

<user/> component with start_prim/stop_prim,

start_both/stop_both, start_second/stop_second,

start_sec/stop_sec. For scripts details, see 14 page

293.

With another class name, you must explicitly

activate/deactivate process monitoring after/before the

start/stop of the process.

[argregex="regular

expression on process

arguments"]

Regular expression matching the list of arguments of the

process to monitor, including the executable name.

Optional parameter.

See 13.9.4 page 275 for help on retrieving the list of

arguments of a process.

Linux examples with vi editor on myfile ("man regex" for

more information):

name="vi" argregex=".*myfile.*"

name="vi" argregex="/myrep/myfile.*"

name="vi" argregex="/myrep/myfile"

Windows examples with notepad editor on myfile ("class

CatlRegExp" for more information):

name="notepad.exe" argregex=".*myfile.*"

SafeKit User's Guide

274 39 A2 19MC 01

name="notepad.exe"

argregex="c:\\myrep\\myfile.*"

name="notepad.exe" argregex="c:\\myrep\\myfile"

As regular expressions are defined inside the

XML file userconfig.xml, special characters

interpreted by XML like '<' or '>' cannot be

used in regular expressions.

atleast="1" Minimum number of processes that must be running.

If this minimum is not reached, then SafeKit triggers an

action

Example: name="oracle" argregex=".*db1.*"

atleast="1" means that an action will be triggered if

less than one oracle instance is running on db1.

When set to -1, this criterion is meaningless.

Default value: 1

action=

"restart"|

"stopstart"|

"stop"|

"noaction"|

"executable_name"

Action (or handler) to execute on the application module.

noaction means logging a message, restart triggers a

local restart and stopstart triggers a failover.

To avoid a loop on reproducible fault, a maxloop counter

is incremented at each restart/stopstart command. For

the maxloop definition, see section 13.2 page 236.

To define a special handler, either set an absolute path

or a path relative to the "bin" directory of the module:

SAFE/modules/AM/bin/. We recommend a relative path

and a handler defined inside the module.

When defining a special handler, a new class name must

be associated with the monitored process.

For a special handler on Linux, on success, end with exit
0

For a special handler on Windows, on success, end with
%SAFEBIN%\exitcode 0

With a different value, SafeKit performs a stopstart

command.

When running special handlers, the maxloop counter is

not incremented. To increment it:

safekit incloop –m AM –i <handler name>

This command increments the counter and returns 1

when the limit has been reached.

Default value: stopstart

start_after=[nb polling

cycles]
Without the start_after attribute the monitoring of

processes is immediately effective.

 Userconfig.xml for a module configuration

39 A2 19MC 01 275

Otherwise, it is delayed for (n-1)*polltimer (in

seconds) where:

 n is the value given in start_after parameter

 polltimer is the value set on the errd flag (30

seconds by default)

For example, if start_after="3", the server is delayed

for 60 seconds ((3-1)*30).

The start_after parameter is useful if the process takes a

certain time to start.

Default value: 0

Advanced parameters

atmax="-1" Maximum number of processes that can run.

If this maximum is reached, then SafeKit triggers an

action.

atmax="-1" means that this criterion is meaningless.

With atmax="0", an action is triggered each time the

process is started.

Default value: -1 this criterion is meaningless

</errd>

13.9.4 <errd> commands

If the command is used inside a user script, then the SAFEMODULE environment

variable is set and the -m AM parameter is not necessary

safekit –r errdpoll_running This command prints into the file

SAFEVAR/errdpoll_reserrd (SAFEVAR=/var/safekit

on Linux and SAFEVAR=c:\safekit\var on Windows if

c: is the installation drive), one line for each running

process with following fields:

<pid> <command name> <command full name and

arguments list> (parent=<parent pid>)

In Windows, the command name is displayed in lower

case.

Useful to find the process name and its arguments for

an <errd> configuration

SafeKit User's Guide

276 39 A2 19MC 01

safekit errd disable

"classname" –m AM
Suspends the monitoring of the processes included in

the class classname (for the application module AM).

Must be explicitly done in stop_... scripts before

stopping the application, for processes in class different

from prim, both, second, sec.

safekit errd enable

"classname" –m AM
Resumes the monitoring of the processes defined with

the class classname (for the application module AM).

Must be explicitly done in start_... scripts after starting

the application, for processes in class different from

prim, both, second, sec.

safekit errd suspend –m AM

Suspends the monitoring of all processes except

SafeKit processes (for the application module AM).

Useful when stopping manually the application without

triggering error detection.

safekit errd resume –m AM

Resumes the monitoring of processes suspended with

safekit errd suspend (for the application module

AM).

safekit errd list –m AM Lists all processes monitored by SafeKit (including

SafeKit processes) and defined in the application

module AM.

The list displayed may be truncated due to internal

limits. The full list can be found in the file

SAFEVAR/modules/AM/errdlist.

SAFEVAR=/var/safekit on Linux and

SAFEVAR=c:\safekit\var on Windows if c: is the

installation drive.

 Userconfig.xml for a module configuration

39 A2 19MC 01 277

safekit kill

–name="process_name"

[–argregex="…"]

–level="kill_level"

<errd> component must run.

level="test": only display the process list

level="terminate": kill processes

level="9": send SIGKILL signal to processes (Linux

only)

level="15": send SIGTERM signal to processes (Linux

only)

Windows examples ("class CatlRegExp" for more

information):

safekit kill –name="notepad.exe"

–argregex=".*myfile.*" –level="terminate"

safekit kill –name="notepad.exe"

–argregex="c:\\myrep\\myfile.*"

–level="terminate"

Linux examples ("man regex" for more information) :

safekit kill –name="vi"

–argregex=".*myfile.*" –level="9"

safekit kill –name="vi"

–argregex="/myrep/myfile.*"

–level="9"

13.10 Checkers (<check> tag)

SafeKit brings built-in checkers with failover rules (for default failover rules details, see

13.18.5 page 290). The checkers are:

 13.11 “TCP checker (<tcp> tags)” page 278

 13.12 “Ping checker (<ping> tags)” page 280

 13.13 “Interface checker (<intf> tags)” page 281

 13.14 “IP checker (<ip> tags)” page 282

 13.15 “Custom checker (<custom> tags)” page 283

 13.16 “Module checker (<module> tags)” page 285

 13.17 “Splitbrain checker (<splitbrain> tag)” page 287

13.10.1 <check> example

All built-in checkers are configured under a single <check> section:

<check>

 <!-- Insert below <tcp> <ping> <intf> <ip> <custom> <module> <splitbrain> tags

-->

</check>

SafeKit User's Guide

278 39 A2 19MC 01

13.10.2 <check> syntax

<check>

 <tcp …>

 <to …/>

 </tcp>

 …

 <ping …>

 <to …/>

 </ping>

 …

 <intf …>

 <to …/>

 </intf>

 …

 <ip …>

 <to …/>

 </ip>

 …

 <custom …/>

 …

 <module …>

 [<to …/>]

 </module>

…

 <splitbrain …/>

</check>

The <check> tag and full subtree can be changed with a dynamic

configuration.

13.11 TCP checker (<tcp> tags)

By default, a <tcp> checker makes a local restart of the application

when the checked tcp service is down.

13.11.1 <tcp> example

<check>

 <tcp ident="R1test" when="prim" >

 <to addr="R1" port="80"/>

 </tcp>

</check>

Insert the <tcp> tag into the <check> section if this one is already defined.

See also example in 15.8 page 310.

 Userconfig.xml for a module configuration

39 A2 19MC 01 279

13.11.2 <tcp> syntax

 <tcp

 ident="tcp_checker_name"

 when="prim|second|both|pre"

 >

 <to

 addr="IP_address" or "name_to_check"

 port="TCP_port_to_check"

 [interval="10"]

 [timeout="5"]

 />

 </tcp>

13.11.3 <tcp> attributes

<tcp Set as many <tcp> sections as there are TCP checkers.

ident="tcp_checker_name" TCP checker name.

when="prim|second|both" Use this value for a TCP checker related to the

application.

The when value sets the checker start and stop schedule

respectively after and before the application’s eponym

start and stop scripts (start_prim/stop_prim,

start_second/stop_second, start_both/stop_both).

Action in case of failure: safekit restart of the

application module. For default failover rules detail, see

13.18.5 page 290.

At each restart, the maxloop counter is incremented. For

its definition, see 13.2.3 page 237.

when="pre" Use this value for a TCP checker not related to the

application.

The checker is started/stopped after/before user scripts

prestart/poststop.

You must add a special failover rule for this "tcp"

checker. Typically:

external_tcp_service: if (tcp.tcp_checker_name

== down) then wait();

This rule executes a stopwait and puts the application

module in the WAIT state while the external TCP service

is not responding. See 13.18 page 288 for more

information.

At each stopwait, the maxloop counter is incremented

(see 13.2.3 page 237 for its definition).

<to

addr="IP_@" or "name" IP address or name to check (ex.: 127.0.0.1 for a local

service).

IPv4 or IPv6 address.

SafeKit User's Guide

280 39 A2 19MC 01

port="value" TCP port to check.

[interval="10"] Interval in seconds between two connections trials.

Default value: 10 seconds

[timeout="5"] Connection establishment timeout in seconds.

Default value: 5 seconds

</tcp>

13.12 Ping checker (<ping> tags)

By default, a <ping> checker stops the module and waits for the ping

to be up.

13.12.1 <ping> example

<check>

 <ping ident="testR2" >

 <to addr="R2"/>

 </ping>

</check>

Insert the <ping> tag into the <check> section if this one is already defined.

See also the example in 15.9 page 310.

13.12.2 <ping> syntax

 <ping

 ident="ping_checker_name"

 [when="pre"]

 >

 <to

 addr="IP_address" or "name_to_check"

 [interval="10"]

 [timeout="5"]

 />

 </ping>

13.12.3 <ping> attributes

<ping Set as many ping sections as there are ping checkers.

ident="ping_checker_name" Ping checker name as displayed in the command

safekit state -v –m AM. Name of checkers must be

unique.

 Userconfig.xml for a module configuration

39 A2 19MC 01 281

[when="pre"] Default if not set.

Started/stopped after/before user scripts

prestart/poststop.

Executes a stopwait and puts the application module in

the WAIT state if there is no reply to the ICMP ping

requests (see default failover rules definition in 13.18.5

page 290).

At each stopwait, the maxloop counter is incremented

(see 13.2.3 page 237 for its definition).

<to

addr="IP_@ or name" External IP address or name to check.

IPv4 or IPv6 address.

[interval="10"] Interval in seconds between two ping requests.

Default value: 10 seconds

[timeout="5"] Reply timeout in seconds to the ping.

Default value: 5 seconds

</ping>

13.13 Interface checker (<intf> tags)

By default, a <intf> checker stops the module and waits for the

network interface to come back up.

13.13.1 <intf> example

<check>

 <intf ident="test_eth0">

 <to local_addr="192.168.1.10"/>

 </intf>

</check>

Insert the <intf> tag into the <check> section if this one is already defined.

See also the example in 15.10 page 310.

13.13.2 <intf> syntax

 <intf

 ident="intf_checker_name"

 [when="pre"]

 >

 <to

SafeKit User's Guide

282 39 A2 19MC 01

 local_addr="interface_physical_IP_address"/>

 </intf>

13.13.3 <intf> attributes

<intf

<intf> sections are automatically generated

on network interface when <interface

check="on"> is set (see the virtual IP

definition in 13.5 page 243).

ident="intf_checker_name" Interface checker name

 [when="pre"] Default.

Started/stopped after/before user scripts

prestart/poststop.

Execute a stopwait and put the application module in

the WAIT state if intf is "down" (see the default

failover rules in 13.18.5 page 290).

At each stopwait, the maxloop counter is incremented

(see 13.2.3 page 237 for its definition).

<to local_addr="IP_@ /> Physical IP address configured on the network interface

to check.

IPv4 or IPv6 address.

</intf>

13.14 IP checker (<ip> tags)

In LINUX and Windows, this checker checks that the IP address is locally defined; in

Windows it also detects IP conflicts.

By default, a <ip> checker makes a local stopstart of the module

when the checked ip address is down.

13.14.1 <ip> example

<check>

 <ip ident="ip_check" >

 <to addr="192.168.1.10" />

 </ip>

</check>

Insert the <ip> tag into the <check> section if this one is already defined.

See also the example in 15.11 page 311.

13.14.2 <ip> syntax

 <ip

 ident="ip_checker_name"

 Userconfig.xml for a module configuration

39 A2 19MC 01 283

 [when="prim"]

 >

 <to

 addr="IP_address" or "name_to_check"

 [interval="10"]

 />

 </ip>

13.14.3 <ip> attributes

<ip Set as many ip sections as there are ip checkers.

ident="ip_checker_name" ip checker name as displayed in the safekit state -v

–m AM command. Name of checkers must be unique.

[when="prim"] Default if not set.

The checker is started/stopped after/before the user

scripts start_prim/stop_prim.

Action in case of failure: safekit stopstart of the

application module (see the default failover rules in

13.18.5 page 290).

At each stopstart, the maxloop counter is incremented

(see 13.2.3 page 237 for its definition).

<to

addr="IP_@ or name" Local IP address or name to check.

IPv4 or IPv6 address.

[interval="10"] Interval in seconds between two checks.

Default value: 10 seconds

</ip>

13.15 Custom checker (<custom> tags)

A custom checker is a program (script or other) that you develop for your module. It is a

loop performing a test at an appropriate periodicity. According to the result of the test,

the program sets the state of a resource ("up" or "down"). Then a special failover rule

decides which action must be taken when the resource is down.

13.15.1 <custom> example

<check>

 <custom ident="AppChecker" when="prim" exec="mychecker"/>

</check>

Insert the <custom> tag into the <check> section if this one is already

defined. Moreover, define the customized checker as well as the associated

failover rule.

See the example in 15.12 page 312.

SafeKit User's Guide

284 39 A2 19MC 01

13.15.2 <custom> syntax

 <custom

 ident="custom_checker_name"

 when="pre|prim|second|both"

 exec="executable_path"

 arg="executable_arguments" />

13.15.3 <custom> attributes

<custom Set as many custom sections as there are custom

checkers.

ident="custom_checker_name" Custom checker name (network IP address).

A custom checker must set its associated resource

state itself, using the command safekit set –r

custom.custom_checker_name –v up|down.

when="pre" The checker is started/stopped after/before user

scripts prestart/poststop.

You must add a special failover rule associated with

the custom checker’s resource. Typically:
wait_custom_checker: if

(custom.custom_checker_name == down) then

wait();

This rule executes a stopwait and puts the application

module in the WAIT state while the resource is down.

Note that SafeKit automatically initializes the state of

the associated resource to "init", and the failover

machine stays in the WAIT state as long as the state

of the custom checker is not evaluated to "up" or

"down". For more information on the failover machine,

see 13.18 page 288.

At each stopwait, the maxloop counter is incremented

(see 13.2.3 page 237 for its definition).

when="prim"|"second"|"both" The checker is started/stopped after/before user

scripts start_prim/stop_prim,

start_second/stop_second, start_both/stop_both.

You must add a special failover rule associated with

the custom checker’s resource. Typically:
restart_custom_checker: if

(custom.custom_checker_name == down) then

restart();

See 13.18 page 288 for more information.

At each restart, the maxloop counter is incremented

(see 13.2.3 page 237 for its definition).

 Userconfig.xml for a module configuration

39 A2 19MC 01 285

exec="executable_path" Defines the executable path of the custom checker.

Can be a binary executable or a script file.

When the path of executable_path is relative, it is

relative to SAFEUSERBIN. In this case, put your

executable file in SAFE/modules/AM/bin/ of your

application module and use a relative path. See 10.1

page 153 for more information on path values.

We recommend a relative path and an executable

inside the module.

In Windows, the executable can be a binary or a ps1,

vbs or cmd script

In Linux, the executable can be a binary or a shell

script

arg="executable_arguments" Defines the executable arguments when the custom

checker is started.

13.16 Module checker (<module> tags)

The module checker checks the availability of another module. It is started/stopped in

the prestart /poststop phase before the start of the application. When the module

checker detects that the external module is down, SafeKit executes a stopwait and puts

the server in the WAIT state until the external module is detected as up by the module

checker. The module checker also triggers a stopstart when it detects that the external

module is stopping or has been restarted (either by a SafeKit stopstart, restart or

failover). See 13.18.5 page 290 for the default failover rules.

At each stopwait or stopstart, the maxloop counter is incremented (see 13.2.3 page 237

for its definition).

The module checker connects to the SafeKit web service on the node running the module

to get the module state (see 10.6 page 167 for details on the web service).

13.16.1 <module> example

Example for the default configuration of the SafeKit web service (protocol: HTTP, port:

9010):

<check>

 <module name="mirror">

 <to addr="M1host"/>

 </module>

</check>

Example for the secured configuration of the SafeKit web service (protocol: HTTPS, port:

9453):

<check>

 <module name="mirror">

 <to addr="M1host" port="9453" secure="on"/>

SafeKit User's Guide

286 39 A2 19MC 01

 </module>

</check>

Insert the <module> tag into the <check> section if this one is already

defined.

For examples, see 15.3 page 303 and 15.13 page 314.

13.16.2 <module> syntax

 <module

 [ident="module_checker_name"]

 name="external_module_name">

 [<to

 addr=" IP_@ or name the Safekit server running the external module"

 [port=port of the SafeKit httpd server"]

 [interval="10"]

 [timeout="5"]

 [secure="on"|"off"]

 />]

 </module>

13.16.3 <module> attributes

<module Set as many <module> sections as there are module

checkers.

name="external_module_name"]
Name of the module checker.

[ident="module_checker_name"]
Name of the external SafeKit module to check.

Default: external_module_name_<IP_@ or name

of the server>

 [<to Definition of the server(s) running the external

module to check.

Default is the local server.

 addr="IP_@ or name of the

server"
IP address or name of the external module.

IPv4 or IPv6 address.

 [port=port of the SafeKit

web service"]
Port of the SafeKit web service.

Default: 9010

 [interval="10"] Interval in seconds between two checks.

Default value: 10 seconds.

 [timeout="5"] Check reply timeout in seconds.

Default value: 5 seconds

 [secure="on"|"off"] Use HTTP protocol (secure="off") or HTTPS

(secure="on")

Default value: off

 Userconfig.xml for a module configuration

39 A2 19MC 01 287

 />]

</module>

13.17 Splitbrain checker (<splitbrain> tag)

SafeKit provides a splitbrain checker that is suits mirror architectures. Split brain is a

situation where, due to temporary failure of all network links between SafeKit nodes, and

possibly due to software or human error, both nodes switched to the primary role while

isolated. This is a potentially harmful state, as it implies that the application is running on

both nodes. Moreover, when file replication is enabled, modifications to the data are

made on the two nodes.

The split-brain checker detects the loss of all connectivity between nodes and selects only

one node to become the primary. The other node is not up-to-date anymore and goes

into the WAIT state until:

 the heartbeat becomes available again

or

 the administrator runs safekit commands to force the start as primary (safekit

stop then safekit prim).

The primary node election is based on the ping of an IP address, called the witness. The

network topology must be designed so that only one node can ping the witness in case of

split brain. If this is not the case, both nodes will go primary.

Ping between nodes and witness must be enabled.

13.17.1 <splitbrain> example

<check>

 <splitbrain ident="SBtest" exec="ping" arg="192.168.1.100"/>

</check>

Insert the <splitbrain> tag into the <check> section if this one is already

defined.

13.17.2 <splitbrain> syntax

 <splitbrain

 ident="witness"

 exec="ping"

 arg=" witness IP address "

 />

13.17.3 <splitbrain> attributes

<splitbrain Set only one splitbrain checker.

SafeKit User's Guide

288 39 A2 19MC 01

ident="witness" Name displayed in the safekit state -v –m AM

command for the witness state.

[when="pre"] Fixed value.

Started/stopped after/before user scripts

prestart/poststop.

The witness state is stored in splitbrain.witness.

It can be displayed using the safekit state -v

–m AM command.

On splitbrain detection, the server with

splitbrain.witness=”up” goes primary; the other

one with splitbrain.witness=”down” sets the

resource splitbrain.uptodate to down and goes

into the WAIT state (for default failover rules, see

13.18.5 page 290).

At each stopwait, the maxloop counter is

incremented (see 13.2.3 page 237 for its

definition).

exec="ping" Fixed value.

Use a pinger to ping the witness and set

splitbrain.witness state.

arg="IP_@ or name" External IP address or name for the witness to

ping.

IPv4 or IPv6 address.

</splitbrain>

13.18 Failover machine (<failover> tag)

SafeKit comes with checkers (network interface, ping, TCP, custom, module checkers)

which regularly (by default every 10 seconds) check resources and set the state to up or

down (see 13.10 page 277 for checkers definition). The failover machine regularly (by

default every 5 seconds) evaluates the global state of all resources and triggers a failover

according to failover rules programmed in a simple language.

In farm architecture, the failover machine can work only on the states of local resources

whereas in mirror architecture, the failover machine can work on the states of local and

remote resources. As the states of resources are exchanged on heartbeat channels, it is

better to have several heartbeat channels (see 13.3 page 239 for heartbeats definition).

13.18.1 <failover> example

<failover>

 <![CDATA[

 ping_failure: if (ping.testR2 == down) then stopstart();

]]>

</failover>

 Userconfig.xml for a module configuration

39 A2 19MC 01 289

13.18.2 <failover> syntax

<failover [extends="yes"] [period="5000"] [handle_time="15000"]>

<![CDATA[

 label: if (expression) then action;

 …

]]>

</failover>

The <failover> tag and subtree cannot be changed with a dynamic

configuration.

13.18.3 <failover> attributes

<failover

[extends="yes"|"no"] If set to yes, the new failover rules extend the default failover

rules (see 13.18.5 page 290 for its definition).

If set to "no", the new failover rules overwrite the default one

(avoid this configuration).

Default value: yes.

[period="5000"] Period in milliseconds between two evaluations of failover

rules.

Default value: 5000 milliseconds (5 seconds)

[handle_time="15000"] A failover action must be stable (the same) at least during the

time handle_time (in milliseconds) before being applied by

the failover machine.

Default value: 15000 milliseconds (15 seconds).

handle_time must be a multiple of the period value.

13.18.4 <failover> commands

safekit set [–m AM] -r

resource_class.resource_id

-v resource_state

[-n] [-l]

This command sets the state of one resource:

Examples:

safekit set -r custom.myresource -v up

safekit set -r custom.myresource -v down

Since SafeKit 7.5, each assignment of the main

resources is stored in a log to keep track of their status.

Use -n to disable this logging or -l to force it.

safekit stopwait -i

"identity"
Equivalent to wait() command of the failover machine

(see 13.18 page 288).

With stopwait, (1) poststop and prestart scripts are

not executed and (2) checkers when="pre" are not

stopped.

SafeKit User's Guide

290 39 A2 19MC 01

The other commands (restart(), stopstart(), stop(), swap()) of the failover

machine are equivalent to control commands (with the -i identity parameter)

described in 9.4 page 146.

maxloop / loop_interval / automatic_reboot are applied if -i

identity is passed to commands (for these attributes details, see 13.2 page

236). This is the case when called from the failover machine.

13.18.5 Failover rules

The default failover rules for the SafeKit checkers are:

<failover>

<![CDATA[

/* rule for module checkers */

module_failure: if (module.? == down) then wait();

/* rule for interface checkers */

interface_failure: if (intf.? == down) then wait();

/* rule for ping checkers */

ping_failure: if (ping.? == down) then wait();

/* rule for tcp checkers */

tcp_failure: if (tcp.? == down) then restart();

/* rule for ip checkers */

ip_failure: if (ip.? == down) then stopstart();

/* rules for splitbrain */

splitbrain_failure: if (splitbrain.uptodate == down) then wait();

]]>

</failover>

They are defined into SAFE/private/conf/include/failover.xml.

There are also failover rules dedicated to file replication management.

The WAKEUP command is automatically generated when no wait() rule applies.

Since SafeKit 7.5, default failover rules are using a new syntax, and rules for

the rfs component are set into the file SAFE/private/conf/include/rfs.xml.

In addition to the default rules, the user can define his own rules (for a custom checker

for example) using the following syntax:

label: if (expression) then action;

with:

 label ::= string

 action ::= stop() | stopstart() | wait() | restart() | swap()

 expression ::= (expression)

| ! expression

| expression && expression

| expression || expression

| expression == expression

| expression != expression

 Userconfig.xml for a module configuration

39 A2 19MC 01 291

| resource ::= [local. | remote.] 0/1resource_class.resource_id

| resource_state

The syntax to design the resources is as follows:

resource ::= [local. | remote.] 0/1resource_class.resource_id (default: local)

resource_class ::= ping | intf | tcp | custom | module | heartbeat | rfs

resource_id ::= * | ? | name

resource_state ::= init | down | up | unknown

init Special initialization state of a resource when the checker is not

started.

If a resource in the init state is used in a failover rule, SafeKit does

evaluate the rule.

up Resource OK.

down Resource KO.

unknown Special state of a remote resource; the remote state is unknown at

the test time (ex.: when the remote module is stopped).

SafeKit User's Guide

292 39 A2 19MC 01

39 A2 19MC 01 293

14. User application scripts for the module

configuration

 14.1 “List of scripts” page 293

 14.2 “Script execution automaton” page 295

 14.3 “Variables and arguments passed to scripts” page 296

 14.4 “SafeKit special commands for user scripts” page 296

To enable user scripts call, <user> tag must be defined in userconfig.xml as described

in 13.7 page 268. This tag could be added or removed dynamically.

Scripts must executables:

✓ in Windows, an executable with the extension and type: .cmd, .vbs, .ps1,.bat

or .exe

✓ in Linux, any type of executable

Each time you update scripts, you must apply the module configuration onto the servers

(with the SafeKit console or command).

Examples of scripts are given in 15.1 page 300 for a mirror module, and in 15.2 page

301 for a farm module.

During the configuration phase, scripts are copied from SAFE/modules/AM/bin

in the execution environment directory SAFE/private/modules/AM/bin

(=SAFEUSERBIN, do not touch scripts at this place) where AM is the module

name.

14.1 List of scripts

Below the list of scripts that can be defined by the user. The essential scripts start/stop

are those that start and stop the application within the module.

14.1.1 Start/stop scripts

start_prim

stop_prim
Scripts for a mirror module.

To start & stop application on the ALONE or PRIM server

start_both
stop_both

Scripts for a farm module.

To start & stop application on all UP servers in a farm cluster

In the special case they are defined in a mirror module, they are also

executed on both servers (PRIM, SECOND or ALONE)

start_second

stop_second
Special scripts for a mirror module

To start & stop application on the "SECOND" server

When the secondary server becomes the primary one,

stop_second followed by start_prim is executed

SafeKit User's Guide

294 39 A2 19MC 01

start_sec

stop_sec
Special scripts for a mirror module

stop_[both,

prim,

second,

sec] force

Scripts for all modules

The stop scripts are called twice: once for a graceful shutdown of the

application (without force as first argument), a second time with a

force parameter for a rapid shutdown (with force as first argument).

prestart

poststop
Scripts for all modules

Executed at the very beginning of the module start and at its end.

By default, prestart contains stop_sec, stop_second, stop_prim,

stop_both to stop application before starting the module under the

control of SafeKit.

transition Script for all modules

This script is executed on state transitions described in 14.2 page

295

14.1.2 Other scripts

config config is called when executing the safekit config –m AM command

on the application module. You can make a special application

configuration in this script.

deconfig deconfig is called when executing the safekit deconfig –m AM

command, which is itself called at the application module uninstallation.

You can remove a special application configuration made previously in

the config script.

confcheck confcheck is called when executing the safekit confcheck –m AM

command on the application module. You can add in this script some

tests for checking changes on the application configuration files.

state state is called when executing the safekit state –v –m AM command

on the application module. You can display a special state of the

application.

level level is called when executing the safekit level –m AM command on

the application module. You can display the application version.

 User application scripts for the module configuration

39 A2 19MC 01 295

14.2 Script execution automaton

Example: first transition from STOP to WAIT calls the script transition STOP

WAIT start is called.

Most of the time, stop scripts are called twice (without the force parameter

and then with the force parameter). In that case the script name is written in

italic.

WAIT

start_both

start_prim

start_sec

start_both

start_second

start_sec

stop_sec

stop_prim

stop_both

stop_sec

stop_second

stop_both

stop_prim

stop_both

start_both

start_prim

stop_prim

stop_both

transition

stop_sec

stop_second

stop_both

transition

transition

start_both

start_prim

transition

start_both

start_second

start_sec

transition

start_both

start_prim

start_sec

stop_prim

transition

start_second

start_sec

stop_sec

stop_second

transition

start_prim

stop_prim

transition

start_second

stop_second

transition

start_prim

transition

[prestart = stop_second ; stop_prim ; stop_both]

STOP

WAIT

ALONE/UP

PRIM
SECOND

ALONE/UP

SECOND PRIM

transition

start_sec

stop_sec

transition

States of an Application Module on 1 Server

unavailable states ("red"=blocked, "magenta"=transiting)

STOP stopped (ready for starting)

WAIT wait for availability of one resource

mirror architecture "green"=stable state

ALONE primary without secondary

PRIM primary, its twin is secondary

SECOND secondary, its twin is primary

farm architecture ("green"=stable state)

UP application module up running

Transitions of an Application Module on 1 Server

Local "safekit start/stop –m AM":

Remote "safekit start/stop –m AM":

"safekit swap –m AM":

"safekit restart –m AM":

WAIT

stop_sec force

stop_prim force

stop_second force

stop_both force

[poststop]

transition

stop_sec

stop_prim

stop_both

transition

STOP

SafeKit User's Guide

296 39 A2 19MC 01

14.3 Variables and arguments passed to scripts

All scripts are called with 3 parameters:

✓ the current state (STOP,WAIT,ALONE,PRIM,SECOND,UP),

✓ the next state (STOP,WAIT,ALONE,PRIM,SECOND,UP)

✓ the action (start, stop, stopstart or stopwait).

The stop scripts are called twice:

✓ a first time for a graceful shutdown of the application

✓ a second time with a force parameter for a forced shutdown (with force as first

argument)

The environment variables that can be used inside scripts are:

✓ SAFE, SAFEMODULE, SAFEBIN, SAFEUSERBIN, SAFEVAR, SAFEUSERVAR (for

details, see 10.1 page 153)

✓ all variables defined in <user> tag of userconfig.xml (see 13.7 page 268).

14.4 SafeKit special commands for user scripts

Special commands are installed under SAFE/private/bin. Special commands can be

called directly in user scripts with %SAFEBIN%\specialcommand or

$SAFEBIN/specialcommand. Outside user scripts, use safekit -r command.

safekit -r

<special command>

[<args>]

<special command> <args> executed within the SafeKit

environment. When the command name is not an absolute path,

the command is searched in SAFEBIN=SAFE/private/bin

directory.

If you use special commands outside SafeKit scripts,

prefix them with safekit -r specialcommand

14.4.1 Commands for Windows

14.4.1.1 sleep, exitcode, sync commands

On Windows, you can use the following basic commands:

 %SAFEBIN%\sleep.exe <timeout value in seconds>

To be used inside stop scripts because net stop service is not synchronous

 %SAFEBIN%\exitcode.exe <exit value>

To return an error value when the script exits

 %SAFEBIN%\sync.exe \\.\<drive letter:>

To sync file system cache of a disk

 User application scripts for the module configuration

39 A2 19MC 01 297

14.4.1.2 namealias command

 %SAFEBIN%/namealias [-n | -s] <alias name>

–n to add a new NetBIOS name (set into start_prim) or -s to suppress the NetBIOS

name (set into stop_prim)

You can also use the SafeKit command netnames (or the windows command nbtstat) to

list NetBIOS information.

14.4.2 Commands for Linux

14.4.2.1 Managing the crontab

$SAFEBIN/gencron

 [del | add] del to disable the entries in stop_prim (by inserting

comments)

or

add to enable the entries in start_prim (by removing

comments).

 <user name> User name in the crontab.

 [all |<command name>] all: to apply on all entries

or

to apply on the name of the command

 -c "<comment>" Header of the comment that will be inserted.

For example, to disable/enable the entry from the admin's crontab,

5 0 * * * $HOME/bin/daily.job >> $HOME/tmp/out 2>&1

Insert into stop_prim:

$SAFEBIN/gencron del admin daily.job -c "SafeKit configuration for

$SAFEMODULE"

And insert into start_prim:

$SAFEBIN/gencron add admin daily.job -c "SafeKit configuration for

$SAFEMODULE"

14.4.2.2 Bounding command

$SAFEBIN/boundcmd <timeout value> <command path> [<args>]

Bound a command with a timeout

boundcmd returns the exit code of the command when the command terminates before

the timeout; otherwise, it exits with the value 2.

For example, to flush data on disk with a timeout of 30 seconds, run:

$SAFEBIN/boundcmd 30 /bin/sync 1>/dev/null 2>&1

SafeKit User's Guide

298 39 A2 19MC 01

14.4.2.3 Commands for Windows and Linux

safekit –r

processtree list |

kill …

List running processes as a tree (except for all) and optional kill

 safekit –r processtree list all

List all running processes.

 safekit –r processtree list <process command name>

List all running processes with the specified command name.

 safekit –r processtree kill <process command name>

List and kill all running processes with the specified command

name.

 safekit –r processtree list | kill <process command

name>| all <regular expression on the full command –

path and arguments>

List (and kill) all running process with the specified command

name and arguments.

Windows examples ("class CatlRegExp" for more information):

safekit –r processtree kill notepad.exe ".*myfile.*"

safekit –r processtree list all “mirror”

Linux examples ("man regex" for more information) :

safekit –r processtree kill vi ".*myfile.*"

safekit –r processtree list all “mirror”

safekit incloop

-m AM –i <handler

name>

SafeKit provides a maxloop counter, the number of restart and

stopstart of the module on error detection. The module is

stopped when this counter reaches the maxloop value over the

loop_interval period.

When running special handlers, the maxloop counter is not

incremented. To increment it, use the command:

safekit incloop –m AM –i <handler name>

It increments the maxloop counter for the module AM and returns

1 when the limit has been reached.

safekit resetloop

-m AM [–i <handler

name>]

Reset the maxloop counter to the value 0

safekit checkloop

-m AM
For checking the maxloop counter for the module AM, use the

command: safekit checkloop –m AM

 It returns 0 when the maxloop counter is not reached or

the last increment occurred outside loop_interval

 It returns 1 when the maxloop counter is reached and

the last increment occurred during loop_interval

39 A2 19MC 01 299

15. Examples of userconfig.xml and user scripts

 15.1 “Generic mirror module example with mirror.safe” page 300

 15.2 “Generic farm module example with farm.safe” page 301

 15.3 “A Farm module depending on a mirror module example” page 303

 15.4 “Dedicated replication network example” page 303

 15.5 “Network load balancing examples in a farm module” page 304

 15.6 “Virtual hostname example with vhost.safe” page 306

 15.7 “Software error detection example with softerrd.safe” page 308

 15.8 “TCP checker example” page 310

 15.9 “Ping checker example” page 310

 15.10 “Interface checker example” page 310

 15.11 “IP checker example” page 311

 15.12 “Custom checker example with customchecker.safe” page 312

 15.13 “Module checker example with leader.safe and follower.safe” page 314

Some examples are taken from the modules delivered with the SafeKit package, under

SAFE/Application_Modules. You can install them with the web console (see 3.7.4 page

62) to examine the configuration file and user scripts in detail.

Other examples of integration are described under

https://www.evidian.com/products/high-availability-software-for-application-

clustering/cluster-configuration/.

The .safe are platform dependent and therefore different in Windows and

Linux.

In the following, the examples use this global cluster configuration:

<cluster>

 <lans>

 <lan name="net3">

 <node name="node1" addr="10.1.0.2"/>

 <node name="node2" addr="10.1.0.3"/>

 <node name="node3" addr="10.1.0.3"/>

 </lan>

 <lan name="default" console="off">

 <node name="node1" addr="192.168.1.1"/>

 <node name="node2" addr="192.168.1.2"/>

 </lan>

 <lan name="repli" console="off">

 <node name="node1" addr="10.0.0.2"/>

 <node name="node2" addr="10.0.0.3"/>

 </lan>

 </lans>

</cluster>

https://www.evidian.com/products/high-availability-software-for-application-clustering/cluster-configuration/
https://www.evidian.com/products/high-availability-software-for-application-clustering/cluster-configuration/

SafeKit User's Guide

300 39 A2 19MC 01

15.1 Generic mirror module example with mirror.safe

Below is the configuration file and user scripts of the generic mirror module,

mirror.safe, in Windows. For Linux, please refer to the mirror.safe delivered with the

Linux package.

conf/serconfig.xml - see 13 page 235

<!-- Mirror Architecture with Real Time File Replication and Failover -->

<!DOCTYPE safe>

<safe>

 <service mode="mirror" defaultprim="alone" maxloop="3" loop_interval="24"

failover="on">

 <heart pulse="700" timeout="30000">

 <heartbeat name=”default” ident=”flow”/>

 </heart>

 <rfs async="second" acl="off" locktimeout="100" nbrei="3" iotimeout="300">

 <replicated dir="c:\test1replicated" mode="read_only"/>

 <replicated dir="c:\test2replicated" mode="read_only"/>

 </rfs>

 <vip>

 <interface_list>

 <interface check="on" arpreroute="on">

 <real_interface>

 <virtual_addr addr="192.168.4.10" where="one_side_alias"/>

 </real_interface>

 </interface>

 </interface_list>

 </vip>

 <user nicestoptimeout="300" forcestoptimeout="300" logging="userlog"/>

 </service>

</safe>

bin/start_prim.cmd - see 14 page 293

@echo off

rem Script called on the primary server for starting application services

rem For logging into SafeKit log use:

rem "%SAFE%\safekit" printi | printe "message"

rem stdout goes into Application log

echo "Running start_prim %*"

set res=0

rem Fill with your services start call

rem net start "myservice" /Y

set res=%errorlevel%

if %res% == 0 goto end

:stop

"%SAFE%\safekit" printe "start_prim failed"

rem uncomment to stop SafeKit when critical

rem "%SAFE%\safekit" stop -i "start_prim"

:end

 Examples of userconfig.xml and user scripts

39 A2 19MC 01 301

bin/stop_prim.cmd - see 14 page 293

@echo off

rem Script called on the primary server for stopping application services

rem For logging into SafeKit log use:

rem "%SAFE%\safekit" printi | printe "message"

rem --

rem

rem 2 stop modes:

rem

rem - graceful stop

rem call standard application stop with net stop

rem

rem - force stop (%1=force)

rem kill application's processes

rem

rem --

rem stdout goes into Application log

echo "Running stop_prim %*"

set res=0

rem default: no action on forcestop

if "%1" == "force" goto end

rem Fill with your service(s) stop call

rem net stop "myservice" /Y

rem If necessary, uncomment to wait for the stop of the services

rem "%SAFEBIN%\sleep" 10

if %res% == 0 goto end

"%SAFE%\safekit" printe "stop_prim failed"

:end

15.2 Generic farm module example with farm.safe

Below is the configuration file and user scripts for the generic farm module, farm.safe,

in Windows. For Linux, please refer to the farm.safe delivered with the Linux package.

conf/userconfig.xml - see 13 page 235

<!-- Farm Architecture with Load-Balancing and Failover -->

<!DOCTYPE safe>

<safe>

 <service mode="farm" maxloop="3" loop_interval="24">

 <!-- Cluster Configuration -->

 <!-- Set nodes on your network -->

 <farm>

 <lan name=”default” />

 <lan name =”net3” />

 </farm>

 <vip>

 <interface_list>

 <interface check="on" arpreroute=”on”>

SafeKit User's Guide

302 39 A2 19MC 01

 <virtual_interface type="vmac_directed">

 <virtual_addr addr="192.168.4.20" where="alias"/>

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="FarmProto">

 <!-- Set load-balancing rule -->

 <rule port="9010" proto="tcp" filter="on_port"/>

 </group>

 </loadbalancing_list>

 </vip>

 <user nicestoptimeout="300" forcestoptimeout="300" logging="userlog"/>

 </service>

</safe>

bin/start_both.cmd - see 14 page 293

@echo off

rem Script called on all servers for starting applications

rem For logging into SafeKit log use:

rem "%SAFE%\safekit" printi | printe "message"

rem stdout goes into Application log

echo "Running start_both %*"

set res=0

rem Fill with your services start call

rem net start "myservice" /Y

set res=%errorlevel%

if %res% == 0 goto end

:stop

set res=%errorlevel%

"%SAFE%\safekit" printe "start_both failed"

rem uncomment to stop SafeKit when critical

rem "%SAFE%\safekit" stop -i "start_both"

:end

bin/stop_both.cmd - see 14 page 293

@echo off

rem Script called on all servers for stopping application

rem For logging into SafeKit log use:

rem "%SAFE%\safekit" printi | printe "message"

rem --

rem

rem 2 stop modes:

 Examples of userconfig.xml and user scripts

39 A2 19MC 01 303

rem

rem - graceful stop

rem call standard application stop with net stop

rem

rem - force stop (%1=force)

rem kill application's processes

rem

rem --

rem stdout goes into Application log

echo "Running stop_both %*"

set res=0

rem default: no action on forcestop

if "%1" == "force" goto end

rem Fill with your services stop call

rem net stop "myservice" /Y

rem If necessary, uncomment to wait for the stop of the services

rem "%SAFEBIN%\sleep" 10

if %res% == 0 goto end

"%SAFE%\safekit" printe "stop_both failed"

:end

15.3 A Farm module depending on a mirror module example

In the example below, the farm module can only start if the mirror module is started.

This architecture can be used to link an IIS farm module to a Microsoft SQL server mirror

module. It is based on the configuration of a module checker in the farm module. For

details, see 13.16 page 285.

farm/conf/userconfig.xml - see 13 page 235

…

 <!-- Checker Configuration: module dependency to mirror + local TCP checker -->

 <check>

 <module name="mirror">

 <to addr="192.168.1.31"/>

 </module>

 </check>

…

Note that the module dependency can be used when you deploy farm and

mirror modules on the same SafeKit cluster or when you deploy farm and

mirror modules on two different clusters.

15.4 Dedicated replication network example

The attribute ident="flow" on the heartbeat, allows to identify the replication flow. For

details, see 13.6 page 251.

conf/userconfig.xml - see 13 page 235

SafeKit User's Guide

304 39 A2 19MC 01

…

 <heart>

 <heartbeat name=”default” />

 <!— 2nd heartbeat special for dedicated replicated network -->

 <heartbeat name=”repli” ident="flow" />

 </heart>

…

15.5 Network load balancing examples in a farm module

15.5.1 TCP load balancing example

With the following userconfig.xml configuration file, you are defining a farm of 3

servers with network load balancing and failover on TCP services 9010 (SafeKit web

service), 23 (Telnet), 80 (HTTP), 443 (HTTPS), 8080 (HTTP proxy) and 389 (LDAP).

With HTTP and HTTPS, network load balancing is set on the client IP address

("on_addr") and not on the client TCP port ("on_port"), to ensure that the

same client is always on the same server over several TCP connections

(stateful versus stateless servers: see 1.4 page 19)

conf/userconfig.xml - see 13 page 235

<!DOCTYPE safe>

<safe>

<service mode="farm">

 <farm>

 <lan name=”net3” />

 </farm>

 <vip>

 <interface_list>

 <interface check="on" arpreroute=”on>

 <virtual_interface type="vmac_directed">

 <virtual_addr addr="192.168.1.50" where="alias" />

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="tcpservices" >

 <cluster>

 <host name="node1" power="1" />

 <host name="node2" power="1" />

 <host name="node3" power="1" />

 </cluster>

 <rule port="9010" proto="tcp" filter="on_port" />

 <rule port="23" proto="tcp" filter="on_port" />

 <rule port="80" proto="tcp" filter="on_addr" />

 <rule port="443" proto="tcp" filter="on_addr" />

 <rule port="8080" proto="tcp" filter="on_addr" />

 <rule port="389" proto="tcp" filter="on_port" />

 </group>

 </loadbalancing_list>

 </vip>

</service>

</safe>

 Examples of userconfig.xml and user scripts

39 A2 19MC 01 305

15.5.2 UDP load balancing example

With the following userconfig.xml configuration file, you are defining a farm of 3

servers with network load balancing and failover on UDP services 53 (DNS), 1645

(RADIUS).

conf/userconfig.xml - see 13 page 235

<!DOCTYPE safe>

<safe>

<service mode="farm">

 <farm>

 <lan name=”net3” />

 </farm>

 <vip>

 <interface_list>

 <interface check="on">

 <virtual_interface type="vmac_invisible">

 <virtual_addr addr="192.168.1.50" where="alias" />

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="udpservices" >

 <cluster>

 <host name="node1" power="1" />

 <host name="node2" power="1" />

 <host name="node3" power="1" />

 </cluster>

 <rule port="53" proto="udp" filter="on_ipid" />

 <rule port="1645" proto="udp" filter="on_ipid" />

 </group>

 </loadbalancing_list>

 </vip>

</service>

</safe>

With "on_ipid", the load balancing is made on the IP identifier filed in the

packet IP header. The load balancing works even if the client always presents

the same client IP address and client port at input.

15.5.3 Multi-group load balancing example

With the following userconfig.xml configuration file, you are defining a farm of 3

servers with a priority for HTTP traffic on the 1st server, HTTPS on the 2nd server and

proxy HTTP on the 3rd server.

conf/userconfig.xml - see 13 page 235

<!DOCTYPE safe>

<safe>

<service mode="farm">

 <farm>

 <lan name=”net3” />

 </farm>

 <vip>

 <interface_list>

 <interface check="on" arpreroute=”on”>

 <virtual_interface type="vmac_directed">

 <virtual_addr addr="192.168.1.50" where="alias" />

SafeKit User's Guide

306 39 A2 19MC 01

 </virtual_interface>

 </interface>

 </interface_list>

 <loadbalancing_list>

 <group name="http_service" >

 <cluster>

 <host name="node1" power="3" />

 <host name="node2" power="1" />

 <host name="node3" power="1" />

 </cluster>

 <rule port="80" proto="tcp" filter="on_addr" />

 </group>

 <group name="https_service" >

 <cluster>

 <host name="node1" power="1" />

 <host name="node2" power="3" />

 <host name="node3" power="1" />

 </cluster>

 <rule port="443" proto="tcp" filter="on_addr" />

 </group>

 <group name="httpproxy_service" >

 <cluster>

 <host name="node1" power="1" />

 <host name="node2" power="1" />

 <host name="node3" power="3" />

 </cluster>

 <rule port="8080" proto="tcp" filter="on_addr" />

 </group>

 </loadbalancing_list>

 </vip>

</service>

</safe>

15.6 Virtual hostname example with vhost.safe

The demonstration module vhost.safe shows how to set a virtual hostname (for details,

see 13.8 page 269)

conf/userconfig.xml - see 13 page 235

…

 <vhost>

 <virtualhostname name="virtualname" envfile="vhostenv.cmd" />

 </vhost>

…

In addition to this configuration, special commands must be executed in the user scripts.

Below is an example of Windows scripts. For Linux, please refer to the vhost.safe

delivered with the Linux package.

bin/start_prim.cmd - see 14 page 293

@echo off

rem Script called on the primary server for starting application services

rem For logging into SafeKit log use:

rem "%SAFE%\safekit" printi | printe "message"

 Examples of userconfig.xml and user scripts

39 A2 19MC 01 307

rem stdout goes into Application log

echo "Running start_prim %*"

rem Set virtual hostname

CALL "%SAFEUSERBIN%\vhostenv.cmd"

rem Next commands use the virtual hostname

FOR /F %%x IN ('hostname') DO SET servername=%%x

echo "hostname is "%servername%

rem WARNING: previous virtual hostname setting is insufficient to change the

hostname for services

rem If one service needs the virtual hostname, you need also to uncomment the rem

following

rem "%SAFE%\private\bin\vhostservice" SERVICE_TO_BE_DEFINED

set res=0

rem Fill with your services start call

set res=%errorlevel%

if %res% == 0 goto end

:stop

"%SAFE%\safekit" printe "start_prim failed"

rem uncomment to stop SafeKit when critical

rem "%SAFE%\safekit" stop -i "start_prim"

:end

bin/stop_prim.cmd - see 14 page 293

@echo off

rem Script called on the primary server for stopping application services

rem For logging into SafeKit log use:

rem "%SAFE%\safekit" printi | printe "message"

rem --

rem

rem 2 stop modes:

rem

rem - graceful stop

rem call standard application stop with net stop

rem

rem - force stop (%1=force)

rem kill application's processes

rem

rem --

rem stdout goes into Application log

echo "Running stop_prim %*"

set res=0

rem Reset virtual hostname

CALL "%SAFEUSERBIN%\vhostenv.cmd"

rem Next commands use the real hostname

FOR /F %%x IN ('hostname') DO SET servername=%%x

echo "hostname is "%servername%

SafeKit User's Guide

308 39 A2 19MC 01

rem default: no action on forcestop

if "%1" == "force" goto end

rem Fill with your services stop call

rem If necessary, uncomment to wait for the stop of the services

rem "%SAFEBIN%\sleep" 10

if %res% == 0 goto end

"%SAFE%\safekit" printi "stop_prim failed"

:end

rem WARNING: if the virtual hostname was set for services in start_prim.cmd,

rem uncomment the following to restore the real hostname in last stop phase :

rem "%SAFE%\private\bin\vhostservice" SERVICE_TO_BE_DEFINED

15.7 Software error detection example with softerrd.safe

The softerrd.safe module is a demonstration of the software error detection for mirror

architecture (for configuration details , see 13.9 page 271).

The module monitors the presence of:

 mybin and myappli started/stopped on the primary node with start_prim/stop_prim

 myotherbin started/stopped on the secondary node with start_second/stop_second

Detecting the shutdown of:

 mybin causes the module to restart

 myappli causes the execution of a special handler restart_myappli.cmd. This script

increments the maxloop counter and restarts the myappli process

 myotherbin causes a stop of the module

The tests consist in killing the mybin, myotherbin or myappli processes with the safekit

kill command.

Below is an extract of softerrd.safe for Windows. For Linux, look at the one delivered

with the Linux package.

conf/userconfig.xml - see 13 page 235

…

 <errd>

 <proc name="mybin.exe" atleast="1" action="restart" class="prim"/>

 <proc name="myotherbin.exe" atleast="1" action="stop" class="second"/>

 <proc name="myappli.exe" atleast="1" action="restart_myappli"

class="myappli"/>

 </errd>

…

 Examples of userconfig.xml and user scripts

39 A2 19MC 01 309

bin/start_prim.cmd - see 14 page 293

Note the call to %SAFE%\safekit errd enable myappli for starting the monitoring of

the processes with class="myappli"

@echo off

%SAFE%\safekit printi "start mybin"

start %SAFEUSERBIN%\mybin.exe 10000000

%SAFE%\safekit printi "start myappli"

start %SAFEUSERBIN%\myappli.exe 10000000

%SAFE%\safekit errd enable myappli

:end

bin/stop_prim.cmd - see 14 page 293

Note the call to %SAFE%\safekit errd disable myappli for stopping the monitoring of

the processes with class="myappli"

@echo on

rem default: no action on forcestop

if "%1" == "force" goto end

%SAFE%\safekit printi "stop mybin"

%SAFE%\safekit kill -level="terminate" -name="mybin.exe"

%SAFE%\safekit printi "stop myappli"

%SAFE%\safekit errd disable myappli

%SAFE%\safekit kill -level="terminate" -name="restart_myappli.cmd"

%SAFE%\safekit kill -level="terminate" -name="myappli.exe"

:end

bin/restart_myappli.cmd

Note the increment of the loop counter and the stop of the module when maxloop is

reached

@echo off

rem Template for script called by errd on error detection instead of standard

restart

%SAFE%\safekit printi "restart_myappli"

rem first disable monitoring of the application

%SAFE%\safekit errd disable myappli

rem increment loop counter

%SAFE%\safekit incloop -i "restart_myappli"

if %errorlevel% == 0 goto next

rem max loop reached

%SAFE%\safekit stop -i "restart_myappli"

%SAFEBIN%\exitcode 0

:next

rem max loop not reached : go on restarting the application

%SAFE%\safekit printi "Restart myappli"

SafeKit User's Guide

310 39 A2 19MC 01

%SAFE%\safekit kill -level="terminate" -name="myappli.exe"

start %SAFEUSERBIN%\myappli.exe 10000000

rem finally, enable monitoring of the application

%SAFE%\safekit errd enable myappli

15.8 TCP checker example

Below is an example of tcp checker definition that tests the Apache web service (for

configuration details, see 13.11 page 278).

The default action when the tcp service is down is to restart locally the module (see

13.18.5 page 290 for the default failover rules description).

conf/userconfig.xml - see 13 page 235

 …

 <check>

 <tcp

 ident="Apache_80"

 when="both"

 >

 <to

 addr="172.21.10.5"

 port="80"

 interval="120"

 timeout="5"

 />

 </tcp>

 </check>

…

15.9 Ping checker example

The next example is the configuration of a ping checker that tests a router at

192.168.1.1 IP address (for configuration details, see 13.12 page 280). The default

action when the router is down is to stop locally the module and to wait for the ping to be

up (see 13.18.5 page 290 for the default failover rules description).

conf/userconfig.xml - see 13 page 235

…

<check >

 <ping ident="router">

 <to addr="192.168.1.1"/>

 </ping>

</check>

…

15.10 Interface checker example

Below is the example of an interface checker configuration automatically generated when

<interface check="on"> is set (for configuration details, see 13.5 page 243). In the

userconfig.xml, the virtual IP address is defined as follows:

conf/userconfig.xml - see 13 page 235

 Examples of userconfig.xml and user scripts

39 A2 19MC 01 311

<vip>

 <interface_list>

 <interface check="on">

 <real_interface>

 <virtual_addr addr="192.168.1.32" where="one_side_alias"/>

 </real_interface>

 </interface>

 </interface_list>

</vip>

The default action when the interface checker is down is to stop locally the module and to

wait for the interface to be up (see 13.18.5 page 290 for the default failover rules).

To generate the configuration of the interface checker, SafeKit computes the hardware

network interface, network and first IP address corresponding to the virtual IP address.

 configuration generated in Windows

<check>

 <intf when="pre" ident="192.168.1.0"

 intf="{8358A0EE-2F3F-4FEE-A33B-EDC406C0C858}">

 <to local_addr="192.168.1.228"/>

 </intf>

</check>

Where {8358A0EE-2F3F-4FEE-A33B-EDC406C0C858} is the identity of the network

interface for the network 192.168.1.0 and with the IP address 192.168.1.228 as first

IP address (safekit –r vip_if_ctrl –L).

 configuration generated in Linux

For instance, a configuration generated on Linux is:

<check>

 <intf when="pre" ident="192.168.1.0" intf="eth2">

 <to local_addr="192.168.1.20"/>

 </intf>

</check>

where eth2 is the identity of the network interface for the network 192.168.1.0 with

the IP address 192.168.1.20 as first IP address (all this information is get from the

ifconfig –a ipconfig or ip addr show command).

For configuration details, see 13.13 page 281.

15.11 IP checker example

Below is the example of an ip checker configuration automatically generated when

<virtual_addr check="on" …> is set (for configuration details, see 13.5 page 243). In

the userconfig.xml, the virtual IP address is defined as follows:

conf/userconfig.xml - see 13 page 235

…

<vip>

 <interface_list>

 <interface check="on" arpreroute="on">

 <real_interface>

 <virtual_addr addr="192.168.1.99" where="one_side_alias" check="on"/>

 </real_interface>

 </interface>

SafeKit User's Guide

312 39 A2 19MC 01

 </interface_list>

</vip>

…

The default action when the ip checker is down is to stopstart locally the module (see

13.18.5 page 290 for the default failover rules).

 configuration generated in Windows and Linux

The ip checker configuration generated is (for more information, see 13.14 page

282):

<check>

 <ip ident="192.168.1.99" when="prim">

 <to addr="192.168.1.99"/>

 </ip>

</check>

15.12 Custom checker example with customchecker.safe

The customchecker.safe module is a demonstration module of a custom checker (see

13.15 page 283).

 This custom checker tests the presence of a file on the primary server

(when="prim"). The associated resource is called custom.checkfile

(ident="checkfile"). It is set to up (file present) or down (file missing)

 The associated failover rule (configured in <failover>), is named

custom_failure and causes the module to restart if the resource is down (see

13.18.5 page 290 for failover rules)

This example can be used as a basis for writing your own checker.

conf/userconfig.xml - see 13 page 235

…

 <check>

 <custom ident="checkfile" exec="checker.ps1"

 arg="c:\safekit\checkfile" when="prim"/>

 </check>

 <user>

 </user>

 <failover>

 <![CDATA[

 custom_failure:

 if(custom.checkfile == down) then restart();

]]>

 </failover>

…

bin/checker.ps1

Note the call to safekit set -r custom.checkfile -m AM to set the resource status

(up or down)

param([Parameter(Mandatory = $true, ValueFromPipeLine = $true,

position=1)][String]$ModName,

 Examples of userconfig.xml and user scripts

39 A2 19MC 01 313

 [Parameter(Mandatory = $true, ValueFromPipeLine = $true,

position=2)][String]$RName,

 [Parameter(Mandatory = $true, ValueFromPipeLine = $true,

position=3)][String]$Arg1Value,

 [Parameter(Mandatory = $false, ValueFromPipeLine = $false,

position=4)][String]$Grace="2",

 [Parameter(Mandatory = $false, ValueFromPipeLine = $false,

position=5)][String] $Period="5"

)

return up on success | down on failure

Function test([String]$Arg1Value)

{

 $res="down"

 # Replace the following by your test

 if (Test-Path "$Arg1Value")

 {

 $res="up"

 }

 return $res

}

$customchecker=$MyInvocation.MyCommand.Name

$safekit="$env:SAFE/safekit.exe"

$safebin="$env:SAFEBIN"

$gracecount=0

$prevrstate="unknown"

wait a little

Start-Sleep $Period

while ($true){

 Start-Sleep $Period

 $rstate = test($Arg1Value)

 if($rstate -eq "down"){

 $gracecount+=1

 }else{

 $gracecount = 0

 if($prevrstate -ne $rstate){

 & $safekit set -r "$RName" -v $rstate -i

$customchecker -m $ModName

 $prevrstate = $rstate

 }

 }

 if($gracecount -ge $Grace){

 if($prevrstate -ne $rstate){

 & $safekit set -r "$RName" -v $rstate -i

$customchecker -m $ModName

 $prevrstate = $rstate

 }

 $gracecount = 0

 }

}

The executable associated with the checker is automatically called with at least 2

arguments:

 The 1st argument is the module name

 The 2nd is the name of the resource to be assigned

SafeKit User's Guide

314 39 A2 19MC 01

If the <custom> configuration contains the arg attribute, its value is passed as the next

arguments.

The checker script is written with the following precautions:

 The resource is only assigned if its value has changed

 When the resource is down, the checker consolidates this state (grace times) before

assigning it. This can help to avoid false error detections.

Each time you modify the custom checker script in SAFE/modules/AM/bin/,

you must apply the new configuration.

15.13 Module checker example with leader.safe and
follower.safe

This example describes the two application modules leader.safe and follower.safe

delivered with SafeKit:

 The leader module defines shared SafeKit resources between followers like virtual IP

addresses and replicated directories

 The follower modules contain individual start and stop of several applications that are

then isolated in different modules. Each follower module can be started and stopped

independently without stopping the other modules.

The leader module is configured for a mirror architecture. It also includes the start and

stop of the follower modules.

Each follower module is configured for a light architecture with user scripts and error

detectors. The follower modules depend on the leader failover with the following module

checker:

follower/conf/userconfig.xml - see 13 page 235

<check>

 <module name="leader"/>

</check>

This is a shortcut for:

<module name="leader">

 <to addr="127.0.0.1" port="9010"/>

</module>

If you change the listening port for the SafeKit web service (as

described in 10.6 page 167), replace the short configuration with the full

one and change the port value.

39 A2 19MC 01 315

16. SafeKit cluster in the cloud

 16.1 “SafeKit cluster in Amazon AWS” page 315

 16.2 “SafeKit cluster in Microsoft Azure” page 321

 16.3 “SafeKit cluster in Google GCP” page 327

You can install, configure, and administer SafeKit modules that run on virtual servers in

the cloud instead of on-premises physical servers. This requires a minimum of cloud

and/or server settings, especially to implement the virtual IP address. These settings are

automatically done with SafeKit AWS CloudFormation template and Azure templates.

Templates provide a very fast and easy way to install and preconfigure a SafeKit cluster

in AWS, Azure or Google clouds.

For a quick start, refer to:

✓ mirror cluster in AWS or farm cluster in AWS

✓ mirror cluster in Azure or farm cluster in Azure

✓ mirror cluster in GCP or farm cluster in GCP

16.1 SafeKit cluster in Amazon AWS

In the following, we suppose that you are familiar with:

 Amazon Elastic Compute Cloud (Amazon EC2) that offers computing capacity in the

Amazon Web Services (AWS) cloud. For more information about the features of

Amazon EC2, see the Amazon EC2 product page

 AWS CloudFormation that helps deploying instances and applications on Amazon EC2.

It permits to save a lot of time and effort so that you can spend less time managing

EC2 resources and more time focusing on your applications that run in AWS.

16.1.1 Install a SafeKit cluster with the AWS CloudFormation template
for SafeKit

SafeKit provides an AWS CloudFormation templates for AWS QuickStart that are a very

fast and easy way for implementing the SafeKit clustering solution. It offers 2 templates:

 one template for deploying a mirror cluster, with some specific settings described in

16.1.3 page 318

 one template for deploying a farm cluster, with some specific settings described in

16.1.4 page 319

https://www.evidian.com/products/high-availability-software-for-application-clustering/aws-high-availability-cluster-synchronous-replication-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/aws-load-balancing-cluster-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/azure-high-availability-cluster-synchronous-replication-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/azure-load-balancing-cluster-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/gcp-high-availability-cluster-synchronous-replication-failover/
https://www.evidian.com/products/high-availability-software-for-application-clustering/gcp-load-balancing-cluster-failover/
https://aws.amazon.com/ec2

SafeKit User's Guide

316 39 A2 19MC 01

 it deploys two EC2 instances (up to four) in the same region but distributed across

multiple availability zones. You can choose the instance type and operating

system (Windows 2016 or CentOS 7)

 it configures one virtual network (virtual private cloud, VPC)

✓ it includes a public address (Elastic IP, EIP) and a private address for each

instance. The private addresses are used for the SafeKit framework

communications

✓ It configures the AWS security groups for accepting remote connection

from the administrator (remote desktop for Windows, ssh for Linux) and

from the SafeKit web console (https://EIP:9453). It also accepts all

communications on the private addresses.

 It configures an AWS load balancer for implementing the virtual IP of the mirror or

the farm module according to the chosen template

 it runs all operations to make SafeKit ready for use:

✓ it installs the SafeKit package

✓ it fills the SafeKit cluster configuration and applies it on all nodes (for

details on cluster configuration, see 12 page 227)

✓ it applies the HTTPS configuration for securing the SafeKit web console

(for details on HTTPS configuration, see 11 page 177)

https://eip:9453/

 SafeKit cluster in the cloud

39 A2 19MC 01 317

✓ it installs, configures, and starts a mirror or farm module according to the

chosen template

At the end of the SafeKit AWS CloudFormation template deployment, simply connect a

web browser to the URL specified in the model's application output. This URL connects to

the configuration wizard described in 11.4.3 page 197. Apply the described procedure for

using the secure SafeKit web console with your browser (connected to https://EIP:9453,

where EIP is the public address of one cluster node). You can then exploit SafeKit as an

on-premises installation by installing, configuring, and administering a mirror or farm

module in the AWS cloud.

16.1.2 Install a SafeKit cluster without the AWS CloudFormation

template for SafeKit

You can implement SafeKit on AWS instances created outside the AWS CloudFormation

template for SafeKit. In this case, before implementing a SafeKit module, the

administrator must manually make settings for AWS, instances, and SafeKit. Then you

have specific settings for implementing your SafeKit module:

 for mirror cluster, see 16.1.3 page 318

 for farm cluster, see 16.1.4 page 319

AWS settings

You must set AWS to:

 associate public addresses to each instance if you want to administer them with the

SafeKit web console from the internet

 configure the security groups associated with network(s) to enable the

communications of the SafeKit framework and the SafeKit web console. The ports to

open are described in 10.3.3.2 page 159

 use a high-bandwidth, low-latency network if real-time replication is used in a mirror

module

Instances settings

In each instance, you must also:

 install the SafeKit package

 apply the HTTPS configuration to secure the SafeKit web console (described in 11

page 177)

SafeKit settings

Finally, you must enter the SafeKit cluster configuration and apply it to all nodes (for

details on cluster configuration, see 12 page 227). For each network, it can be specified if

it can be used by the console and/or the framework. By default, a network can be used

by both the console and the framework (console = "on" framework = "on"). In the

case of the public network accessible from the internet, it is preferable not to use it for

the communications of the SafeKit framework but only for the console (console = "on"

framework = "off").

https://eip:9453/

SafeKit User's Guide

318 39 A2 19MC 01

 For example, the SafeKit cluster configuration file would be:

<cluster>

<lans>

<lan name="Public" console="on" framework="off">

<node name="Server1" addr="18.214.97.59"/>

<node name="Server2" addr="52.5.205.73"/>

</lan>

<lan name="Private" console="on" framework="on">

<node name="Server1" addr="10.0.1.10"/>

<node name="Server2" addr="10.0.2.10"/>

</lan>

</lans>

</cluster>

The first lan definition is only for the SafeKit web console; the second one is also for the

SafeKit framework between cluster nodes.

16.1.3 Mirror cluster in AWS

Mirror module features are operational in the AWS cloud (real-time file replication,

failover, process death detection, checkers, …), except the virtual IP address failover.

Anyway, you can set up a SafeKit mirror module on the cluster and use the Elastic load

balancing provided by AWS (see Elastic load balancing products in AWS) in such way that

all the traffic is routed only to the primary node. An IP address and/or DNS name is

associated with the load balancer that plays the role of the virtual IP. The AWS

CloudFormation template for SafeKit configures a network load balancer and applies all

the required setup. You just must set the load balancing rule and security group for your

application.

If you set up the mirror module outside the AWS CloudFormation template for SafeKit,

you must configure yourself the AWS load balancer and the security group.

For the load balancer, you must:

https://aws.amazon.com/elasticloadbalancing/

 SafeKit cluster in the cloud

39 A2 19MC 01 319

 specify the rules for your application

 set the SafeKit cluster nodes in the target group

 configure the health check. This one tests whether the instance is in a healthy

state or an unhealthy state.

The load-balancer routes the traffic only to healthy instances. It resumes routing

requests to the instance when this one has been restored to a healthy state.

SafeKit provides a health checker for SafeKit modules. For this, configure it in the load

balancer with:

 HTTP protocol

 port 9010, the SafeKit web service port

 URL /var/modules/AM/ready.txt, where AM is the module name

In a mirror module, the health checker:

 returns OK, that means that the instance is healthy, when the module state is

PRIM (green) or ALONE (green)

 returns NOT FOUND, that means that the instance is out of service, in all other states

The AWS network security group must be at least configured to enable communications

for the following protocols and ports:

 UDP - 4800 for the safeadmin service (between SafeKit cluster nodes)

 UDP - 8888 for the module heartbeat (between SafeKit cluster nodes)

 TCP – 5600 for the module real time file replication (between SafeKit nodes)

 TCP – 9010 for the load-balancer health check and the SafeKit web console in HTTP

 TCP – 9453 for the SafeKit web console in HTTPS

 TCP – 9001 for configuring the SafeKit web console for HTTPS

The module’s port value depends on the module id (for details, see 10.3.3.2

page 159).The previous values are the one for the first module installed on

the node.

16.1.4 Farm cluster in AWS

Most farm module features are operational in the AWS cloud (process death detection,

checkers), except the virtual IP address with load-balancing. Anyway, you can set up a

SafeKit farm module on the cluster and use the Elastic load balancing provided by AWS

(see Elastic load balancing products in AWS). An IP address and/or DNS name is

associated with the load balancer that plays the role of the virtual IP. The AWS

CloudFormation template for SafeKit configures a network load balancer and applies all

the required setup. You just must set the load balancing rule and security group for your

application.

https://aws.amazon.com/elasticloadbalancing/

SafeKit User's Guide

320 39 A2 19MC 01

If you set up the farm module outside the AWS CloudFormation template for SafeKit, you

must configure yourself the AWS load balancer and the security group.

For the load balancer, you must:

 specify the rules for your application

 set the SafeKit cluster nodes in the target group

 configure the health check. This one tests whether the instance is in a healthy

state or an unhealthy state.

The load-balancer routes the traffic only to healthy instances. It resumes routing

requests to the instance when this one has been restored to a healthy state.

SafeKit provides a health check for SafeKit modules. For this, configure it in the load

balancer with:

 HTTP protocol

 port 9010, the SafeKit web service port

 URL /var/modules/AM/ready.txt, where AM is the module name

In a farm module, the health check:

 returns OK, that means that the instance is healthy, when the module state is UP

(green)

 returns NOT FOUND, that means that the instance is out of service, in all other states

The AWS network security group must be at least configured to enable communications

for the following protocols and ports:

 UDP - 4800 for the safeadmin service (between SafeKit cluster nodes)

 TCP – 9010 for the load-balancer health check and the SafeKit web console in HTTP

 TCP – 9453 for the SafeKit web console in HTTPS

 TCP – 9001 for configuring the SafeKit web console for HTTPS

 SafeKit cluster in the cloud

39 A2 19MC 01 321

16.2 SafeKit cluster in Microsoft Azure

In the following, we suppose that you are familiar with Microsoft Azure that is a cloud

computing service created by Microsoft for building, testing, deploying, and managing

applications and services through a global network of Microsoft-managed data centers.

For more information about the features and use of Azure, see the Microsoft Azure portal.

16.2.1 Install a SafeKit cluster with the Azure resource template for

SafeKit

SafeKit provides an Azure resource template that is a very fast and easy way for

implementing the SafeKit clustering solution. It offers 2 templates:

 one template for deploying a mirror cluster, with some specific settings described in

16.2.3 page 323

 one template for deploying a farm cluster, with some specific settings described in

16.2.4 page 325

 it deploys a resource group that defines all the resources necessary for

implementing the SafeKit cluster in one location but separate availability zones

 the resource group contains two virtual machines (up to four) running in different

availability zones. You can choose the operating system (Windows 2016, Linux

CentOS 7). Each virtual machine has an internet access through a public IP

address and DNS name

 the resource group contains a private virtual network for SafeKit framework

communications

https://portal.azure.com/

SafeKit User's Guide

322 39 A2 19MC 01

 it configures the network security group for accepting only remote connection

from the administrator (remote desktop for Windows, ssh for Linux) and from the

SafeKit web console (https://DNS:9453) on the public addresses.

 It configures an Azure load balancer for implementing the virtual IP of the mirror

or the farm module according to the chosen template

 it runs all operations to make SafeKit ready for use:

✓ it installs the SafeKit package

✓ it fills the SafeKit cluster configuration and applies it on all nodes (for

details on cluster configuration, see 12 page 227)

✓ it applies the HTTPS configuration for securing the SafeKit web console (for

details on HTTPS configuration, see 11 page 177)

✓ it installs, configures, and starts a mirror or farm module according to the

chosen template

At the end of the SafeKit Azure template deployment, simply connect a web browser to

the URL specified in the template’s application output. This URL connects to the

configuration wizard described in 11.4.3 page 197. Apply the described procedure for

using the secure SafeKit web console with your browser (connected to https://DNS:9453,

where DNS is the DNS name of one cluster node). You can then exploit SafeKit as an on-

premises installation by installing, configuring, and administering a mirror or farm

module in the Azure cloud.

16.2.2 Install a SafeKit cluster without the Azure resource template for

SafeKit

You can implement SafeKit on Azure virtual machines created outside the Azure resource

template for SafeKit. In this case, before implementing a SafeKit module, the

administrator must manually make settings for Azure, virtual machines and SafeKit. Then

you have specific settings for implementing your SafeKit module:

 for mirror cluster, see 16.2.3 page 323

 for farm cluster, see 16.2.4 page 325

Azure settings

You must set Azure to:

 associate public IP addresses and DNS name to virtual machines if you want to

administer them with the SafeKit web console from the internet

 configure the network security group to enable the communications of the SafeKit

framework and the SafeKit web console. The ports to open are described in 10.3.3.2

page 159

 use a high-bandwidth, low-latency network if real-time replication is used in a mirror

module

Virtual machines settings

On each virtual machine, you must also:

 install the SafeKit package

https://dns:9453/

 SafeKit cluster in the cloud

39 A2 19MC 01 323

 apply the HTTPS configuration to secure the SafeKit web console (described in 11

page 177)

SafeKit settings

Finally, you must enter the SafeKit cluster configuration and apply it to all nodes (for

details on cluster configuration, see 12 page 227). For each network, it can be specified if

it can be used by the console and/or the framework. By default, a network can be used

by both the console and the framework (console = "on" framework = "on"). In the

case of the public network accessible from the internet, it is preferable not to use it for

the communications of the SafeKit framework but only for the console (console = "on"

framework = "off"). For example, the SafeKit cluster configuration file would be:

<cluster>

<lans>

<lan name="Public" console="on" framework="off">

<node name="Server1" addr="centosazurlinvm1.westeurope.cloudapp.azure.com"/>

<node name="Server2" addr="centosazurlinvm2.westeurope.cloudapp.azure.com"/>

</lan>

<lan name="Private" console="on" framework="on">

<node name="Server1" addr="10.0.0.10"/>

<node name="Server2" addr="10.0.0.11"/>

</lan>

</lans>

</cluster>

The first lan definition is only for the SafeKit web console; the second one is also for the

SafeKit framework between cluster nodes.

16.2.3 Mirror cluster in Azure

Mirror module features are operational in the Azure cloud (real-time file replication,

failover, process death detection, checkers, …) except the virtual IP address failover.

Anyway, you can set up a SafeKit mirror module on the cluster and use the load

balancing provided by Azure (see Load Balancer in Azure) and route request only to the

primary node. An IP is associated with the load balancer that plays the role of the virtual

IP. The Azure resource template for SafeKit configures a network load balancer and

applies all the required setup. You just must set the load balancing rule and network

security group for your application.

https://docs.microsoft.com/azure/load-balancer/

SafeKit User's Guide

324 39 A2 19MC 01

If you set up the mirror module outside the Azure resource template for SafeKit, you

must configure yourself the Azure load balancer and the network security group.

For the load balancer, you must:

 specify the rules for your application

 set the SafeKit cluster nodes into the backend pool

 configure the probe. This one tests whether the instance is in a healthy state or an

unhealthy state.

The load balancer routes traffic only to healthy instances. It resumes routing requests to

the instance when the instance has been restored to a healthy state.

SafeKit provides a probe for SafeKit modules. For this, configure the probe in the load

balancer with:

 HTTP protocol

 port 9010, the SafeKit web service port

 URL /var/modules/AM/ready.txt, where AM is the module name

In a mirror module, the probe:

 returns OK, that means that the instance is healthy, when the module state is

PRIM (green) or ALONE (green)

 returns NOT FOUND, that means that the instance is out of service, in all other states

 SafeKit cluster in the cloud

39 A2 19MC 01 325

The Azure network security group must be at least configured to enable communications

for the following protocols and ports:

 UDP - 4800 for the safeadmin service (between SafeKit cluster nodes)

 UDP - 8888 for the module heartbeat (between SafeKit cluster nodes)

 TCP – 5600 for the module real time file replication (between SafeKit nodes)

 TCP – 9010 for the load-balancer health check and the SafeKit web console in HTTP

 TCP – 9453 for the SafeKit web console in HTTPS

 TCP – 9001 for configuring the SafeKit web console for HTTPS

The module’s port value depends on the module id (see 10.3.3.2 page

159).The previous values are the one for the first module installed on the

node.

16.2.4 Farm cluster in Azure

Most farm module features are operational in the Azure cloud (process death detection,

checkers), except the virtual IP address with load-balancing. Anyway, you can set up a

SafeKit farm module on the cluster and use the load balancing provided by Azure (see

Load Balancer in Azure). An IP is associated with the load balancer that plays the role of

the virtual IP. The Azure resource template for SafeKit configures a network load

balancer and applies all the required setup. You just must set the load balancing rule and

network security group for your application.

If you set up the farm module outside the Azure resource template for SafeKit, you must

configure yourself the Azure load balancer and the network security group.

https://docs.microsoft.com/azure/load-balancer/

SafeKit User's Guide

326 39 A2 19MC 01

For the load balancer, you must:

 specify the rules for your application

 set the SafeKit cluster nodes as backend

 configure the probe. This one tests whether the instance is in a healthy state or an

unhealthy state.

The load balancer routes traffic only to healthy instances. It resumes routing requests to

the instance when the instance has been restored to a healthy state.

SafeKit provides a probe for SafeKit modules. For this, configure the probe in the load

balancer with:

 HTTP protocol

 port 9010, the SafeKit web service port

 URL /var/modules/AM/ready.txt, where AM is the module name

In a farm module, the probe:

 returns OK, that means that the instance is healthy, when the farm module state is

 UP (green)

 returns NOT FOUND, that means that the instance is out of service, in all other states

The Azure network security group must be at least configured to enable communications

for the following protocols and ports:

 UDP - 4800 for the safeadmin service (between SafeKit cluster nodes)

 TCP – 9010 for the load-balancer health check and the SafeKit web console in HTTP

 TCP – 9453 for the SafeKit web console in HTTPS

 TCP – 9001 for configuring the SafeKit web console for HTTPS

 SafeKit cluster in the cloud

39 A2 19MC 01 327

16.3 SafeKit cluster in Google GCP

In the following, we suppose that you are familiar with Google Cloud Platform (GCP) that

delivers virtual machines running in Google's innovative data centers and worldwide fiber

network. For more information about the features and use of Google Cloud Platform, see

the Google Cloud Computing documentation.

16.3.1 Install a SafeKit cluster with the Google Marketplace solution for

SafeKit

SafeKit provides solutions in the Google Marketplace that are a very fast and easy way

for implementing the SafeKit clustering solution. It offers 4 solutions:

 2 solutions for deploying a mirror cluster (one solution for Windows and one solution

for Linux), with some specific settings described in 16.3.3 page 329

 2 solutions for deploying a farm cluster (one solution for Windows and one solution

for Linux), with some specific settings described in 16.3.4 page 331

See Startup Guide for a full description of these solutions’ deployment.

 it deploys two virtual machine instances in the same region but distributed across

two zones. You can choose the instance type and operating system (Windows

2019 or CentOS 7)

 it uses one virtual network (virtual private cloud, VPC) attached to the project in

which the solution is deployed

✓ it includes a public address (External IP, EIP) and a private address for

each instance. The private addresses are used for the SafeKit framework

communications

✓ It configures the firewall for accepting remote connection from the

administrator (remote desktop for Windows, ssh for Linux) and from the

SafeKit web console (https://EIP:9453). It also accepts all communications

on the private addresses.

https://cloud.google.com/compute/?hl=en
https://www.evidian.com/pdf/safekit-startup-guide-google-gcp-marketplace.pdf
https://eip:9453/

SafeKit User's Guide

328 39 A2 19MC 01

 It configures an GCP load balancer for implementing the virtual IP of the mirror or

the farm module according the chosen solution

 it runs all operations to make SafeKit ready for use:

✓ it includes the SafeKit package into the VM image

✓ it fills the SafeKit cluster configuration and applies it on all nodes (for

details on cluster configuration, see 12 page 227)

✓ if HTTPS is selected for the deployment, it applies the HTTPS configuration

for securing the SafeKit web console (for details on HTTPS configuration,

see 11 page 177)

✓ it installs, configures, and starts a mirror or farm module according to the

chosen solution

At the end of the SafeKit Google Marketplace solution deployment, simply follow the

recommendations listed into “Suggested next steps”. This must be done if you have

selected HTTPS for the SafeKit console access mode. You must connect a web browser to

the URL specified for opening the configuration wizard described in 11.4.3 page 197.

Apply the procedure for using the secure SafeKit web console with your browser

(connected to https://EIP:9453, where EIP is the public address of one cluster node).

You can then exploit SafeKit as an on-premises installation by installing, configuring, and

administering a mirror or farm module in the Google GCP cloud.

16.3.2 Install a SafeKit cluster without the Google Marketplace solution

for SafeKit

You can implement SafeKit on Google virtual machines created outside the Google

Marketplace solution for SafeKit. In this case, before implementing a SafeKit module, the

administrator must manually make settings for Google Compute Engine, virtual machines

and SafeKit. Then you have specific settings for implementing your SafeKit module:

 for mirror cluster, see 16.3.3 page 329

 for farm cluster, see 16.3.4 page 331

GCP settings

You must set GCP to:

 associate an external IP address (and optionally DNS name) to each virtual machine

instance if you want to administer them with the SafeKit web console from the

internet

 configure the firewall rules for the Virtual Private Cloud (VPC) network to enable the

communications of the SafeKit framework and the SafeKit web console. The ports to

open are described in 10.3.3.2 page 159

 use a high-bandwidth, low-latency network if real-time replication is used in a mirror

module

Virtual machines settings

On each virtual machine, you must also:

 install the SafeKit package

https://eip:9453/

 SafeKit cluster in the cloud

39 A2 19MC 01 329

 apply the HTTPS configuration to secure the SafeKit web console (described in 11 page

177)

SafeKit settings

Finally, you must enter the SafeKit cluster configuration and apply it to all nodes (for

details on cluster configuration, see 12 page 227). For each network, it can be specified if

it can be used by the console and/or the framework. By default, a network can be used

by both the console and the framework (console = "on" framework = "on"). In the

case of the public network accessible from the internet, it is preferable not to use it for

the communications of the SafeKit framework but only for the console (console = "on"

framework = "off").

For example, the SafeKit cluster configuration file would be:

<cluster>

<lans>

<lan name="Public" console="on" framework="off">

<node name="Inst1" addr="104.199.111.158"/>

<node name=" Inst2" addr="35.205.22.195"/>

</lan>

<lan name="Private" console="on" framework="on">

<node name=" Inst1" addr="10.132.0.4"/>

<node name=" Inst2" addr="10.32.0.6"/>

</lan>

</lans>

</cluster>

The first lan definition is only for the SafeKit web console; the second one is also for the

SafeKit framework between cluster nodes.

16.3.3 Mirror cluster in GCP

Mirror module features are operational in the Google Cloud Platform (real-time file

replication, failover, process death detection, checkers, …) except the virtual IP address

failover. Anyway, you can set up a SafeKit mirror module on the cluster and use the load

balancing provided by GCP (see Load Balancer in GCP) and route request only to the

primary node. An IP is associated with the load balancer that plays the role of the virtual

IP. The Google Marketplace solution for SafeKit configures a network load balancer and

applies all the required setup. You just have to set the load balancing rule and network

security group for your application.

https://cloud.google.com/load-balancing/docs/

SafeKit User's Guide

330 39 A2 19MC 01

If you set up the mirror module outside the Google Marketplace solution for SafeKit, you

must configure yourself the Google load balancer and the network firewall.

For the load balancer, you must:

 specify the rules for your application

 set the SafeKit cluster nodes as backend

 configure the health check. This one tests whether the instance is in a healthy

state or an unhealthy state.

The load balancer routes traffic only to healthy instances. It resumes routing requests to

the instance when the instance has been restored to a healthy state.

SafeKit provides a health check for SafeKit modules. For this, configure the health check

in the load balancer with:

 HTTP protocol

 port 9010, the SafeKit web service port

 URL /var/modules/AM/ready.txt, where AM is the module name

In a mirror module, the health check:

 returns OK, that means that the instance is healthy, when the module state is

PRIM (green) or ALONE (green)

 returns NOT FOUND, that means that the instance is unhealthy, in all other states

 SafeKit cluster in the cloud

39 A2 19MC 01 331

The network firewall must be at least configured to enable communications for the

following protocols and ports:

 UDP - 4800 for the safeadmin service (between SafeKit cluster nodes)

 UDP - 8888 for the module heartbeat (between SafeKit cluster nodes)

 TCP – 5600 for the module real time file replication (between SafeKit nodes)

 TCP – 9010 for the load-balancer health check and the SafeKit web console in HTTP

 TCP – 9453 for the SafeKit web console in HTTPS

 TCP – 9001 for configuring the SafeKit web console for HTTPS

The module’s port value depends on the module id (see 10.3.3.2 page

159).The previous values are the one for the first module installed on the

node.

16.3.4 Farm cluster in GCP

Most farm module features are operational in the Google Cloud Platform (process death

detection, checkers), except the virtual IP address with load-balancing. Anyway, you can

set up a SafeKit farm module on the cluster and use the load balancing provided by GCP

(see Load Balancer in GCP). An IP is associated with the load balancer that plays the role

of the virtual IP. The Google Marketplace solution for SafeKit configures a network load

balancer and applies all the required setup. You just have to set the load balancing rule

and network security group for your application

If you set up the farm module outside the Google Marketplace solution for SafeKit, you

must configure yourself the Google load balancer and the network firewall.

For the load balancer, you must:

 specify the rules for your application

https://cloud.google.com/load-balancing/docs/

SafeKit User's Guide

332 39 A2 19MC 01

 set the SafeKit cluster nodes as backend

 configure the health check. This one tests whether the instance is in a healthy

state or an unhealthy state.

The load balancer routes traffic only to healthy instances. It resumes routing requests to

the instance when the instance has been restored to a healthy state.

SafeKit provides a health check for SafeKit modules. For this, configure the health check

in the load balancer with:

 HTTP protocol

 port 9010, the SafeKit web service port

 URL /var/modules/AM/ready.txt, where AM is the module name

In a farm module, the health check:

 returns OK, that means that the instance is healthy, when the farm module state is

 UP (green)

 returns NOT FOUND, that means that the instance is out of service, in all other states

The network firewall must be at least configured to enable communications for the

following protocols and ports:

 UDP - 4800 for the safeadmin service (between SafeKit cluster nodes)

 TCP – 9010 for the load-balancer health check and the SafeKit web console in HTTP

 TCP – 9453 for the SafeKit web console in HTTPS

 TCP – 9001 for configuring the SafeKit web console for HTTPS

39 A2 19MC 01 333

17. Third-Party Software

SafeKit uses the third-party software listed below. For licenses details, refer to the links

or the license files into the SAFE/licenses directory (SAFE=/opt/safekit in Linux and

SAFE=C:\safekit in Windows if %SYSTEMDRIVE%=C:).

libxml http://xmlsoft.org

MIT license - http://www.xmlsoft.org/FAQ.html#License

Used by the SafeKit framework

libxslt http://xmlsoft.org/XSLT/

MIT license -

https://gitlab.gnome.org/GNOME/libxslt/blob/master/Copyright

Used by the SafeKit framework

Net-SNMP http://net-snmp.sourceforge.net

BSD like and BSD license - http://www.net-snmp.org/about/license.html

Used by SafeKit SNMP agent

HTTP server https://httpd.apache.org/

Apache license - https://www.apache.org/licenses/LICENSE-2.0

Used by the SafeKit web service for the web console, the deprecated java

console, the distributed commands, and the checkers between modules

APR https://apr.apache.org/

Apache license - https://www.apache.org/licenses/LICENSE-2.0

Used by the Apache HTTP server

PCRE http://www.pcre.org/

BSD license - https://www.pcre.org/licence.txt

Used by the Apache HTTP server

libexpat https://github.com/libexpat/libexpat

BSD license -

https://github.com/libexpat/libexpat/blob/master/expat/COPYING

Used by the Apache HTTP server

cURL http://curl.haxx.se

Curl license - https://github.com/curl/curl/blob/master/docs/LICENSE-

MIXING.md

Used by the distributed commands and the module checker

cgic ANSI C library for CGI Programming

Cgic license - Credits and License Terms

Used by the SafeKit web service

OpenSSL http://www.openssl.org

http://xmlsoft.org/
http://www.xmlsoft.org/FAQ.html#License
http://xmlsoft.org/XSLT/
https://gitlab.gnome.org/GNOME/libxslt/blob/master/Copyright
http://net-snmp.sourceforge.net/
http://www.net-snmp.org/about/license.html
https://httpd.apache.org/
https://www.apache.org/licenses/LICENSE-2.0
https://apr.apache.org/
https://www.apache.org/licenses/LICENSE-2.0
http://www.pcre.org/
https://www.pcre.org/licence.txt
https://github.com/libexpat/libexpat
https://github.com/libexpat/libexpat/blob/master/expat/COPYING
http://curl.haxx.se/
https://github.com/curl/curl/blob/master/docs/LICENSE-MIXING.md
https://github.com/curl/curl/blob/master/docs/LICENSE-MIXING.md
https://github.com/boutell/cgic/blob/master/README.md
https://github.com/boutell/cgic/blob/master/README.md#credits
http://www.openssl.org/

SafeKit User's Guide

334 39 A2 19MC 01

dual OpenSSL and SSLeay license -

https://www.openssl.org/source/license.html

Used when securing the web console, the distributed commands, and the

checkers between modules

Lua http://www.lua.org

MIT license - https://www.lua.org/license.html

Used by safekit config command and the web console

Info-ZIP http://info-zip.org

BSD like license - http://infozip.sourceforge.net/license.html

Used to pack/unpack a .safe template

libnet Packet Construction and Injection

Libnet license - license

Used for arpreroute and ping

SafeKit uses the following third-party packages only for the SafeKit web console:

jquery http://jquery.org/

MIT license - https://jquery.org/license/

jQuery is a fast, small, and feature-rich JavaScript library

jquery-ui http://jqueryui.com/

MIT license - https://github.com/jquery/jquery-

ui/blob/master/LICENSE.txt

jQuery UI is a curated set of user interface interactions, effects,

widgets, and themes built on top of the jQuery JavaScript Library

jquery-lang https://github.com/Irrelon/jquery-lang-js

MIT license - https://github.com/Irrelon/jquery-lang-

js/blob/master/js/jquery-lang.js

Used for translating the messages of the web console from a default

language to other languages

jquery-ui-

tabs.paging

jquery-ui-tabs-paging - MIT license

Used for translating the messages of the web console from a default

language to other languages

codemirror http://codemirror.net/

MIT-style license -

https://github.com/codemirror/CodeMirror/blob/master/LICENSE

Text editor widget by Marijn Haverbeke. Used in the SafeKit Web

console for file edition

codemirror-ui https://github.com/jagthedrummer/codemirror-ui

https://www.openssl.org/source/license.html
http://www.lua.org/
https://www.lua.org/license.html
http://info-zip.org/
http://infozip.sourceforge.net/license.html
https://github.com/libnet/libnet/blob/master/LICENSE
https://github.com/libnet/libnet/blob/master/LICENSE
http://jquery.org/
https://jquery.org/license/
http://jqueryui.com/
https://github.com/jquery/jquery-ui/blob/master/LICENSE.txt
https://github.com/jquery/jquery-ui/blob/master/LICENSE.txt
https://github.com/Irrelon/jquery-lang-js
https://github.com/Irrelon/jquery-lang-js/blob/master/js/jquery-lang.js
https://github.com/Irrelon/jquery-lang-js/blob/master/js/jquery-lang.js
https://code.google.com/archive/p/jquery-ui-tabs-paging/
http://codemirror.net/
https://github.com/codemirror/CodeMirror/blob/master/LICENSE
https://github.com/jagthedrummer/codemirror-ui

 Third-Party Software

39 A2 19MC 01 335

MIT License - https://github.com/jagthedrummer/codemirror-

ui/blob/master/LICENSE

Simple interface written by Jeremy Green to act as a wrapper around

the codemirror widget

bootstrap icons https://icons.getbootstrap.com/ - MIT license –

https://github.com/twbs/bootstrap/blob/v4.0.0/LICENSE

Thanks to iTweek (http://itweek.deviantart.com/) for the Knob buttons toolbar icons.

https://github.com/jagthedrummer/codemirror-ui/blob/master/LICENSE
https://github.com/jagthedrummer/codemirror-ui/blob/master/LICENSE
https://icons.getbootstrap.com/
https://github.com/twbs/bootstrap/blob/v4.0.0/LICENSE
http://itweek.deviantart.com/

SafeKit User's Guide

336 39 A2 19MC 01

39 A2 19MC 01 337

Log Messages Index

“Action …” messages

"Action forcestop called by web@<IP>/SYSTEM/root", 114, 146

"Action prim called by web@<IP>/SYSTEM/root",97, 146

"Action primforce called by SYSTEM/root", 104

"Action restart called by web@<IP>/SYSTEM/root",73, 79, 114, 146

"Action restart|stopstart called by customscript", 92, 118, 146

"Action restart|stopstart called by errd", 86, 118, 146

"Action restart|stopstart from failover rule tcp_failure", 87, 118, 146

"Action second called by web@<IP>/SYSTEM/root", 97, 146

"Action shutdown called by SYSTEM", 76, 85, 142

"Action start called at boot time", 76, 77, 85, 142

"Action start called automatically", 86, 87, 92

"Action start called by web@<IP>/SYSTEM/root", 72, 79, 114, 146

"Action stop called by web@<IP>/SYSTEM/root", 72, 79, 114, 146

"Action stopstart called by failover-off", 101, 146

"Action stopstart called by modulecheck", 91, 146

"Action stopstart called by web@<IP>/SYSTEM/root", 114, 146

"Action stopstart from failover rule customid_failure", 92, 118, 146

"Action swap called by web@<IP>/SYSTEM/root", 73, 114, 146

"Action wait from failover rule customid_failure", 92, 117

"Action wait from failover rule tcpid_failure", 88, 117

"Action wait from failover rule degraded_server", 100

"Action wait from failover rule interface_failure", 89, 117

"Action wait from failover rule module_failure", 91, 117

"Action wait from failover rule notuptodate_server", 99, 117

"Action wait from failover rule ping_failure", 90, 117

"Action wait from failover rule splitbrain_failure", 117

File replication and reintegration messages

"Copied <reintegration statistics>", 75

"Data may be inconsistent for replicated directories (stopped during reintegration)", 104

"Data may not be uptodate for replicated directories (wait for the start of the remote

server)", 97, 99, 117

"If you are sure that this server has valid data, run safekit prim to force start as

primary", 97, 99, 117

SafeKit User's Guide

338 39 A2 19MC 01

"If you are sure that this server has valid data, run safekit primforce to force start as

primary", 104

"Reintegration ended (synchronize)", 75

"Updating directory tree from /replicated", 75

Load-balancing messages

"farm load: 128/256 (group FarmProto)" , 107, 82, 83

"farm membership: node1 (group FarmProto)", 82, 83

"farm membership: node1 node2 (group FarmProto)" , 107, 82, 83

"farm membership: node2 (group FarmProto)", 83

“Local state …” messages

"Local state ALONE green", 96, 72, 78

"Local state PRIM green", 96,72

"Local state SECOND green",96, 72

"Local state UP green",106 ,107

"Local state WAIT red", 117, 101

“Remote state …” messages

"Remote state ALONE green", 96,78

"Remote state PRIM green", 96, 72

"Remote state SECOND green",96, 72

"Remote state UNKNOWN grey", 77, 78

“Resource …” messages

"Resource custom.id set to down by customscript", 92, 117, 118

"Resource custom.id set to up by customscript", 92

"Resource heartbeat.0 set to down by heart", 77, 78

"Resource heartbeat.flow set to down by heart", 77, 78

"Resource intf.ip.0 set to down by intfcheck", 89, 117

"Resource intf.ip.0 set to up by intfcheck", 89

"Resource module.othermodule_ip set to down by modulecheck", 91, 117

"Resource module.othermodule_ip set to up by modulecheck", 91

"Resource ping.id set to down by pingcheck", 90, 117

"Resource ping.id set to up by pingcheck", 90

"Resource rfs.degraded set to up by nfsadmin", 100

39 A2 19MC 01 339

"Resource tcp.id set to down by tcpcheck", 87, 88, 117, 118

"Resource tcp.id set to up by tcpcheck", 88

“Script …” messages

"Script start_prim", 293, 72, 73, 76, 77

"Script stop_prim", 293, 72, 76, 78

"Script start_both", 293, 79, 85

"Script stop_both", 293, 79

“Transition …” messages

"Transition RESTART|STOPSTART from failover rule customid_failure", 92

"Transition STOPSTART from failover-off", 101

"Transition SWAP from defaultprim", 103

"Transition SWAP from SYSTEM", 73

"Transition WAIT_TR from failover rule customid_failure", 92

"Transition WAIT_TR from failover rule interface_failure", 89

"Transition WAKEUP from failover rule Implicit_WAKEUP", 88, 89, 90, 91, 92

Other messages

"Begin of Swap", 73, 103

"End of stop", 72, 79, 76, 85

"event atleast on proc <appli.exe>", 86, 118

"Failover-off configured", 101

"Previous halt unexpected", 77, 85

"Reason of failover: no heartbeat", 77

"Reason of failover: remote stop", 72, 76

"Requested prim start aborted ", 104

"Split brain recovery: exiting alone", 78

"Split brain recovery: staying alone", 78

"Stopping loop", 119, 86, 87, 88, 89, 90, 91, 92, 92, 118

"Virtual IP <ip 1.10 of mirror> set", 74

"Virtual IP <ip1.20 of farm> set", 80

SafeKit User's Guide

340 39 A2 19MC 01

39 A2 19MC 01 341

Index

Architectures

mirror, farm… - 15

cloud - 315

Installation

install, upgrade… - 25

Console

configuration, control… - 35

securing (https, …) - 177

Advanced Configuration

cluster.xml - 227

userconfig.xml - 235

user scripts - 293

examples - 299

Administration

mirror - 95

farm - 105

advanced - 153

command line – 141

Support

tests - 69

troubleshooting - 109

call desk - 133

log messages - 337

Other

table of contents - 5

third-party software – 333

SafeKit User's Guide

342 39 A2 19MC 01

